Metamath Proof Explorer


Theorem tskmval

Description: Value of our tarski map. (Contributed by FL, 30-Dec-2010) (Revised by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tskmval AVtarskiMapA=xTarski|Ax

Proof

Step Hyp Ref Expression
1 elex AVAV
2 grothtsk Tarski=V
3 1 2 eleqtrrdi AVATarski
4 eluni2 ATarskixTarskiAx
5 3 4 sylib AVxTarskiAx
6 intexrab xTarskiAxxTarski|AxV
7 5 6 sylib AVxTarski|AxV
8 eleq1 y=AyxAx
9 8 rabbidv y=AxTarski|yx=xTarski|Ax
10 9 inteqd y=AxTarski|yx=xTarski|Ax
11 df-tskm tarskiMap=yVxTarski|yx
12 10 11 fvmptg AVxTarski|AxVtarskiMapA=xTarski|Ax
13 1 7 12 syl2anc AVtarskiMapA=xTarski|Ax