Metamath Proof Explorer


Theorem tskr1om2

Description: A nonempty Tarski class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf .) (Contributed by NM, 22-Feb-2011)

Ref Expression
Assertion tskr1om2 TTarskiTR1ωT

Proof

Step Hyp Ref Expression
1 eluni2 yR1ωxR1ωyx
2 r1fnon R1FnOn
3 fnfun R1FnOnFunR1
4 2 3 ax-mp FunR1
5 fvelima FunR1xR1ωyωR1y=x
6 4 5 mpan xR1ωyωR1y=x
7 r1tr TrR1y
8 treq R1y=xTrR1yTrx
9 7 8 mpbii R1y=xTrx
10 9 rexlimivw yωR1y=xTrx
11 trss Trxyxyx
12 6 10 11 3syl xR1ωyxyx
13 12 adantl TTarskiTxR1ωyxyx
14 tskr1om TTarskiTR1ωT
15 14 sseld TTarskiTxR1ωxT
16 tskss TTarskixTyxyT
17 16 3exp TTarskixTyxyT
18 17 adantr TTarskiTxTyxyT
19 15 18 syld TTarskiTxR1ωyxyT
20 19 imp TTarskiTxR1ωyxyT
21 13 20 syld TTarskiTxR1ωyxyT
22 21 rexlimdva TTarskiTxR1ωyxyT
23 1 22 biimtrid TTarskiTyR1ωyT
24 23 ssrdv TTarskiTR1ωT