Description: A nonempty Tarski class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf .) (Contributed by NM, 22-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | tskr1om2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 | |
|
2 | r1fnon | |
|
3 | fnfun | |
|
4 | 2 3 | ax-mp | |
5 | fvelima | |
|
6 | 4 5 | mpan | |
7 | r1tr | |
|
8 | treq | |
|
9 | 7 8 | mpbii | |
10 | 9 | rexlimivw | |
11 | trss | |
|
12 | 6 10 11 | 3syl | |
13 | 12 | adantl | |
14 | tskr1om | |
|
15 | 14 | sseld | |
16 | tskss | |
|
17 | 16 | 3exp | |
18 | 17 | adantr | |
19 | 15 18 | syld | |
20 | 19 | imp | |
21 | 13 20 | syld | |
22 | 21 | rexlimdva | |
23 | 1 22 | biimtrid | |
24 | 23 | ssrdv | |