Description: Tarski's theorem about choice: infxpidm is equivalent to ax-ac . (Contributed by Stefan O'Rear, 4-Nov-2014) (Proof shortened by Stefan O'Rear, 10-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ttac | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfac10 | |
|
2 | vex | |
|
3 | eleq2 | |
|
4 | 2 3 | mpbiri | |
5 | infxpidm2 | |
|
6 | 5 | ex | |
7 | 4 6 | syl | |
8 | 7 | alrimiv | |
9 | finnum | |
|
10 | 9 | adantl | |
11 | harcl | |
|
12 | onenon | |
|
13 | 11 12 | ax-mp | |
14 | fvex | |
|
15 | vex | |
|
16 | 14 15 | unex | |
17 | harinf | |
|
18 | 15 17 | mpan | |
19 | ssun1 | |
|
20 | 18 19 | sstrdi | |
21 | ssdomg | |
|
22 | 16 20 21 | mpsyl | |
23 | breq2 | |
|
24 | xpeq12 | |
|
25 | 24 | anidms | |
26 | id | |
|
27 | 25 26 | breq12d | |
28 | 23 27 | imbi12d | |
29 | 16 28 | spcv | |
30 | 22 29 | syl5 | |
31 | 30 | imp | |
32 | harndom | |
|
33 | ssdomg | |
|
34 | 16 19 33 | mp2 | |
35 | domtr | |
|
36 | 34 35 | mpan | |
37 | 32 36 | mto | |
38 | unxpwdom2 | |
|
39 | orel2 | |
|
40 | 37 38 39 | mpsyl | |
41 | 31 40 | syl | |
42 | wdomnumr | |
|
43 | 13 42 | ax-mp | |
44 | 41 43 | sylib | |
45 | numdom | |
|
46 | 13 44 45 | sylancr | |
47 | ssun2 | |
|
48 | ssnum | |
|
49 | 46 47 48 | sylancl | |
50 | 10 49 | pm2.61dan | |
51 | 50 | alrimiv | |
52 | eqv | |
|
53 | 51 52 | sylibr | |
54 | 8 53 | impbii | |
55 | 1 54 | bitri | |