Metamath Proof Explorer


Theorem ttac

Description: Tarski's theorem about choice: infxpidm is equivalent to ax-ac . (Contributed by Stefan O'Rear, 4-Nov-2014) (Proof shortened by Stefan O'Rear, 10-Jul-2015)

Ref Expression
Assertion ttac CHOICEcωcc×cc

Proof

Step Hyp Ref Expression
1 dfac10 CHOICEdomcard=V
2 vex cV
3 eleq2 domcard=VcdomcardcV
4 2 3 mpbiri domcard=Vcdomcard
5 infxpidm2 cdomcardωcc×cc
6 5 ex cdomcardωcc×cc
7 4 6 syl domcard=Vωcc×cc
8 7 alrimiv domcard=Vcωcc×cc
9 finnum aFinadomcard
10 9 adantl cωcc×ccaFinadomcard
11 harcl haraOn
12 onenon haraOnharadomcard
13 11 12 ax-mp haradomcard
14 fvex haraV
15 vex aV
16 14 15 unex haraaV
17 harinf aV¬aFinωhara
18 15 17 mpan ¬aFinωhara
19 ssun1 haraharaa
20 18 19 sstrdi ¬aFinωharaa
21 ssdomg haraaVωharaaωharaa
22 16 20 21 mpsyl ¬aFinωharaa
23 breq2 c=haraaωcωharaa
24 xpeq12 c=haraac=haraac×c=haraa×haraa
25 24 anidms c=haraac×c=haraa×haraa
26 id c=haraac=haraa
27 25 26 breq12d c=haraac×ccharaa×haraaharaa
28 23 27 imbi12d c=haraaωcc×ccωharaaharaa×haraaharaa
29 16 28 spcv cωcc×ccωharaaharaa×haraaharaa
30 22 29 syl5 cωcc×cc¬aFinharaa×haraaharaa
31 30 imp cωcc×cc¬aFinharaa×haraaharaa
32 harndom ¬haraa
33 ssdomg haraaVharaharaaharaharaa
34 16 19 33 mp2 haraharaa
35 domtr haraharaaharaaaharaa
36 34 35 mpan haraaaharaa
37 32 36 mto ¬haraaa
38 unxpwdom2 haraa×haraaharaaharaa*haraharaaa
39 orel2 ¬haraaaharaa*haraharaaaharaa*hara
40 37 38 39 mpsyl haraa×haraaharaaharaa*hara
41 31 40 syl cωcc×cc¬aFinharaa*hara
42 wdomnumr haradomcardharaa*haraharaahara
43 13 42 ax-mp haraa*haraharaahara
44 41 43 sylib cωcc×cc¬aFinharaahara
45 numdom haradomcardharaaharaharaadomcard
46 13 44 45 sylancr cωcc×cc¬aFinharaadomcard
47 ssun2 aharaa
48 ssnum haraadomcardaharaaadomcard
49 46 47 48 sylancl cωcc×cc¬aFinadomcard
50 10 49 pm2.61dan cωcc×ccadomcard
51 50 alrimiv cωcc×ccaadomcard
52 eqv domcard=Vaadomcard
53 51 52 sylibr cωcc×ccdomcard=V
54 8 53 impbii domcard=Vcωcc×cc
55 1 54 bitri CHOICEcωcc×cc