Metamath Proof Explorer


Theorem ttrclse

Description: If R is set-like over A , then the transitive closure of the restriction of R to A is set-like over A .

This theorem requires the axioms of infinity and replacement for its proof. (Contributed by Scott Fenton, 31-Oct-2024)

Ref Expression
Assertion ttrclse Could not format assertion : No typesetting found for |- ( R Se A -> t++ ( R |` A ) Se A ) with typecode |-

Proof

Step Hyp Ref Expression
1 brttrcl2 Could not format ( y t++ ( R |` A ) x <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc n ) = x ) /\ A. a e. suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) : No typesetting found for |- ( y t++ ( R |` A ) x <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc n ) = x ) /\ A. a e. suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) with typecode |-
2 eqid rec b V w b Pred R A w Pred R A x = rec b V w b Pred R A w Pred R A x
3 2 ttrclselem2 n ω R Se A x A f f Fn suc suc n f = y f suc n = x a suc n f a R A f suc a y rec b V w b Pred R A w Pred R A x n
4 3 3expb n ω R Se A x A f f Fn suc suc n f = y f suc n = x a suc n f a R A f suc a y rec b V w b Pred R A w Pred R A x n
5 4 ancoms R Se A x A n ω f f Fn suc suc n f = y f suc n = x a suc n f a R A f suc a y rec b V w b Pred R A w Pred R A x n
6 5 rexbidva R Se A x A n ω f f Fn suc suc n f = y f suc n = x a suc n f a R A f suc a n ω y rec b V w b Pred R A w Pred R A x n
7 1 6 syl5bb Could not format ( ( R Se A /\ x e. A ) -> ( y t++ ( R |` A ) x <-> E. n e. _om y e. ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , x ) ) ` n ) ) ) : No typesetting found for |- ( ( R Se A /\ x e. A ) -> ( y t++ ( R |` A ) x <-> E. n e. _om y e. ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , x ) ) ` n ) ) ) with typecode |-
8 vex y V
9 8 elpred Could not format ( x e. _V -> ( y e. Pred ( t++ ( R |` A ) , A , x ) <-> ( y e. A /\ y t++ ( R |` A ) x ) ) ) : No typesetting found for |- ( x e. _V -> ( y e. Pred ( t++ ( R |` A ) , A , x ) <-> ( y e. A /\ y t++ ( R |` A ) x ) ) ) with typecode |-
10 9 elv Could not format ( y e. Pred ( t++ ( R |` A ) , A , x ) <-> ( y e. A /\ y t++ ( R |` A ) x ) ) : No typesetting found for |- ( y e. Pred ( t++ ( R |` A ) , A , x ) <-> ( y e. A /\ y t++ ( R |` A ) x ) ) with typecode |-
11 resdmss dom R A A
12 vex x V
13 8 12 breldm Could not format ( y t++ ( R |` A ) x -> y e. dom t++ ( R |` A ) ) : No typesetting found for |- ( y t++ ( R |` A ) x -> y e. dom t++ ( R |` A ) ) with typecode |-
14 dmttrcl Could not format dom t++ ( R |` A ) = dom ( R |` A ) : No typesetting found for |- dom t++ ( R |` A ) = dom ( R |` A ) with typecode |-
15 13 14 eleqtrdi Could not format ( y t++ ( R |` A ) x -> y e. dom ( R |` A ) ) : No typesetting found for |- ( y t++ ( R |` A ) x -> y e. dom ( R |` A ) ) with typecode |-
16 11 15 sselid Could not format ( y t++ ( R |` A ) x -> y e. A ) : No typesetting found for |- ( y t++ ( R |` A ) x -> y e. A ) with typecode |-
17 16 pm4.71ri Could not format ( y t++ ( R |` A ) x <-> ( y e. A /\ y t++ ( R |` A ) x ) ) : No typesetting found for |- ( y t++ ( R |` A ) x <-> ( y e. A /\ y t++ ( R |` A ) x ) ) with typecode |-
18 10 17 bitr4i Could not format ( y e. Pred ( t++ ( R |` A ) , A , x ) <-> y t++ ( R |` A ) x ) : No typesetting found for |- ( y e. Pred ( t++ ( R |` A ) , A , x ) <-> y t++ ( R |` A ) x ) with typecode |-
19 rdgfun Fun rec b V w b Pred R A w Pred R A x
20 eluniima Fun rec b V w b Pred R A w Pred R A x y rec b V w b Pred R A w Pred R A x ω n ω y rec b V w b Pred R A w Pred R A x n
21 19 20 ax-mp y rec b V w b Pred R A w Pred R A x ω n ω y rec b V w b Pred R A w Pred R A x n
22 7 18 21 3bitr4g Could not format ( ( R Se A /\ x e. A ) -> ( y e. Pred ( t++ ( R |` A ) , A , x ) <-> y e. U. ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , x ) ) " _om ) ) ) : No typesetting found for |- ( ( R Se A /\ x e. A ) -> ( y e. Pred ( t++ ( R |` A ) , A , x ) <-> y e. U. ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , x ) ) " _om ) ) ) with typecode |-
23 22 eqrdv Could not format ( ( R Se A /\ x e. A ) -> Pred ( t++ ( R |` A ) , A , x ) = U. ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , x ) ) " _om ) ) : No typesetting found for |- ( ( R Se A /\ x e. A ) -> Pred ( t++ ( R |` A ) , A , x ) = U. ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , x ) ) " _om ) ) with typecode |-
24 omex ω V
25 24 funimaex Fun rec b V w b Pred R A w Pred R A x rec b V w b Pred R A w Pred R A x ω V
26 19 25 ax-mp rec b V w b Pred R A w Pred R A x ω V
27 26 uniex rec b V w b Pred R A w Pred R A x ω V
28 23 27 eqeltrdi Could not format ( ( R Se A /\ x e. A ) -> Pred ( t++ ( R |` A ) , A , x ) e. _V ) : No typesetting found for |- ( ( R Se A /\ x e. A ) -> Pred ( t++ ( R |` A ) , A , x ) e. _V ) with typecode |-
29 28 ralrimiva Could not format ( R Se A -> A. x e. A Pred ( t++ ( R |` A ) , A , x ) e. _V ) : No typesetting found for |- ( R Se A -> A. x e. A Pred ( t++ ( R |` A ) , A , x ) e. _V ) with typecode |-
30 dfse3 Could not format ( t++ ( R |` A ) Se A <-> A. x e. A Pred ( t++ ( R |` A ) , A , x ) e. _V ) : No typesetting found for |- ( t++ ( R |` A ) Se A <-> A. x e. A Pred ( t++ ( R |` A ) , A , x ) e. _V ) with typecode |-
31 29 30 sylibr Could not format ( R Se A -> t++ ( R |` A ) Se A ) : No typesetting found for |- ( R Se A -> t++ ( R |` A ) Se A ) with typecode |-