Metamath Proof Explorer


Theorem tz7.48-2

Description: Proposition 7.48(2) of TakeutiZaring p. 51. (Contributed by NM, 9-Feb-1997) (Revised by David Abernethy, 5-May-2013)

Ref Expression
Hypothesis tz7.48.1 FFnOn
Assertion tz7.48-2 xOnFxAFxFunF-1

Proof

Step Hyp Ref Expression
1 tz7.48.1 FFnOn
2 ssid OnOn
3 onelon xOnyxyOn
4 3 ancoms yxxOnyOn
5 1 fndmi domF=On
6 5 eleq2i ydomFyOn
7 fnfun FFnOnFunF
8 1 7 ax-mp FunF
9 funfvima FunFydomFyxFyFx
10 8 9 mpan ydomFyxFyFx
11 10 impcom yxydomFFyFx
12 eleq1a FyFxFx=FyFxFx
13 eldifn FxAFx¬FxFx
14 12 13 nsyli FyFxFxAFx¬Fx=Fy
15 11 14 syl yxydomFFxAFx¬Fx=Fy
16 6 15 sylan2br yxyOnFxAFx¬Fx=Fy
17 4 16 syldan yxxOnFxAFx¬Fx=Fy
18 17 expimpd yxxOnFxAFx¬Fx=Fy
19 18 com12 xOnFxAFxyx¬Fx=Fy
20 19 ralrimiv xOnFxAFxyx¬Fx=Fy
21 20 ralimiaa xOnFxAFxxOnyx¬Fx=Fy
22 1 tz7.48lem OnOnxOnyx¬Fx=FyFunFOn-1
23 2 21 22 sylancr xOnFxAFxFunFOn-1
24 fnrel FFnOnRelF
25 1 24 ax-mp RelF
26 5 eqimssi domFOn
27 relssres RelFdomFOnFOn=F
28 25 26 27 mp2an FOn=F
29 28 cnveqi FOn-1=F-1
30 29 funeqi FunFOn-1FunF-1
31 23 30 sylib xOnFxAFxFunF-1