Description: Uniform Boundedness Theorem, also called the Banach-Steinhaus Theorem. Let T be a collection of bounded linear operators on a Banach space. If, for every vector x , the norms of the operators' values are bounded, then the operators' norms are also bounded. Theorem 4.7-3 of Kreyszig p. 249. See also http://en.wikipedia.org/wiki/Uniform_boundedness_principle . (Contributed by NM, 7-Nov-2007) (Proof shortened by Mario Carneiro, 11-Jan-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ubth.1 | |
|
ubth.2 | |
||
ubth.3 | |
||
Assertion | ubth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ubth.1 | |
|
2 | ubth.2 | |
|
3 | ubth.3 | |
|
4 | oveq1 | |
|
5 | 4 | sseq2d | |
6 | fveq2 | |
|
7 | 1 6 | eqtrid | |
8 | 7 | raleqdv | |
9 | oveq1 | |
|
10 | 3 9 | eqtrid | |
11 | 10 | fveq1d | |
12 | 11 | breq1d | |
13 | 12 | rexralbidv | |
14 | 8 13 | bibi12d | |
15 | 5 14 | imbi12d | |
16 | oveq2 | |
|
17 | 16 | sseq2d | |
18 | fveq2 | |
|
19 | 2 18 | eqtrid | |
20 | 19 | fveq1d | |
21 | 20 | breq1d | |
22 | 21 | rexralbidv | |
23 | 22 | ralbidv | |
24 | oveq2 | |
|
25 | 24 | fveq1d | |
26 | 25 | breq1d | |
27 | 26 | rexralbidv | |
28 | 23 27 | bibi12d | |
29 | 17 28 | imbi12d | |
30 | eqid | |
|
31 | eqid | |
|
32 | eqid | |
|
33 | eqid | |
|
34 | eqid | |
|
35 | 34 | cnbn | |
36 | 35 | elimel | |
37 | elimnvu | |
|
38 | id | |
|
39 | 30 31 32 33 36 37 38 | ubthlem3 | |
40 | 15 29 39 | dedth2h | |
41 | 40 | 3impia | |