Metamath Proof Explorer


Theorem ubth

Description: Uniform Boundedness Theorem, also called the Banach-Steinhaus Theorem. Let T be a collection of bounded linear operators on a Banach space. If, for every vector x , the norms of the operators' values are bounded, then the operators' norms are also bounded. Theorem 4.7-3 of Kreyszig p. 249. See also http://en.wikipedia.org/wiki/Uniform_boundedness_principle . (Contributed by NM, 7-Nov-2007) (Proof shortened by Mario Carneiro, 11-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ubth.1 X = BaseSet U
ubth.2 N = norm CV W
ubth.3 M = U normOp OLD W
Assertion ubth U CBan W NrmCVec T U BLnOp W x X c t T N t x c d t T M t d

Proof

Step Hyp Ref Expression
1 ubth.1 X = BaseSet U
2 ubth.2 N = norm CV W
3 ubth.3 M = U normOp OLD W
4 oveq1 U = if U CBan U + × abs U BLnOp W = if U CBan U + × abs BLnOp W
5 4 sseq2d U = if U CBan U + × abs T U BLnOp W T if U CBan U + × abs BLnOp W
6 fveq2 U = if U CBan U + × abs BaseSet U = BaseSet if U CBan U + × abs
7 1 6 eqtrid U = if U CBan U + × abs X = BaseSet if U CBan U + × abs
8 7 raleqdv U = if U CBan U + × abs x X c t T N t x c x BaseSet if U CBan U + × abs c t T N t x c
9 oveq1 U = if U CBan U + × abs U normOp OLD W = if U CBan U + × abs normOp OLD W
10 3 9 eqtrid U = if U CBan U + × abs M = if U CBan U + × abs normOp OLD W
11 10 fveq1d U = if U CBan U + × abs M t = if U CBan U + × abs normOp OLD W t
12 11 breq1d U = if U CBan U + × abs M t d if U CBan U + × abs normOp OLD W t d
13 12 rexralbidv U = if U CBan U + × abs d t T M t d d t T if U CBan U + × abs normOp OLD W t d
14 8 13 bibi12d U = if U CBan U + × abs x X c t T N t x c d t T M t d x BaseSet if U CBan U + × abs c t T N t x c d t T if U CBan U + × abs normOp OLD W t d
15 5 14 imbi12d U = if U CBan U + × abs T U BLnOp W x X c t T N t x c d t T M t d T if U CBan U + × abs BLnOp W x BaseSet if U CBan U + × abs c t T N t x c d t T if U CBan U + × abs normOp OLD W t d
16 oveq2 W = if W NrmCVec W + × abs if U CBan U + × abs BLnOp W = if U CBan U + × abs BLnOp if W NrmCVec W + × abs
17 16 sseq2d W = if W NrmCVec W + × abs T if U CBan U + × abs BLnOp W T if U CBan U + × abs BLnOp if W NrmCVec W + × abs
18 fveq2 W = if W NrmCVec W + × abs norm CV W = norm CV if W NrmCVec W + × abs
19 2 18 eqtrid W = if W NrmCVec W + × abs N = norm CV if W NrmCVec W + × abs
20 19 fveq1d W = if W NrmCVec W + × abs N t x = norm CV if W NrmCVec W + × abs t x
21 20 breq1d W = if W NrmCVec W + × abs N t x c norm CV if W NrmCVec W + × abs t x c
22 21 rexralbidv W = if W NrmCVec W + × abs c t T N t x c c t T norm CV if W NrmCVec W + × abs t x c
23 22 ralbidv W = if W NrmCVec W + × abs x BaseSet if U CBan U + × abs c t T N t x c x BaseSet if U CBan U + × abs c t T norm CV if W NrmCVec W + × abs t x c
24 oveq2 W = if W NrmCVec W + × abs if U CBan U + × abs normOp OLD W = if U CBan U + × abs normOp OLD if W NrmCVec W + × abs
25 24 fveq1d W = if W NrmCVec W + × abs if U CBan U + × abs normOp OLD W t = if U CBan U + × abs normOp OLD if W NrmCVec W + × abs t
26 25 breq1d W = if W NrmCVec W + × abs if U CBan U + × abs normOp OLD W t d if U CBan U + × abs normOp OLD if W NrmCVec W + × abs t d
27 26 rexralbidv W = if W NrmCVec W + × abs d t T if U CBan U + × abs normOp OLD W t d d t T if U CBan U + × abs normOp OLD if W NrmCVec W + × abs t d
28 23 27 bibi12d W = if W NrmCVec W + × abs x BaseSet if U CBan U + × abs c t T N t x c d t T if U CBan U + × abs normOp OLD W t d x BaseSet if U CBan U + × abs c t T norm CV if W NrmCVec W + × abs t x c d t T if U CBan U + × abs normOp OLD if W NrmCVec W + × abs t d
29 17 28 imbi12d W = if W NrmCVec W + × abs T if U CBan U + × abs BLnOp W x BaseSet if U CBan U + × abs c t T N t x c d t T if U CBan U + × abs normOp OLD W t d T if U CBan U + × abs BLnOp if W NrmCVec W + × abs x BaseSet if U CBan U + × abs c t T norm CV if W NrmCVec W + × abs t x c d t T if U CBan U + × abs normOp OLD if W NrmCVec W + × abs t d
30 eqid BaseSet if U CBan U + × abs = BaseSet if U CBan U + × abs
31 eqid norm CV if W NrmCVec W + × abs = norm CV if W NrmCVec W + × abs
32 eqid IndMet if U CBan U + × abs = IndMet if U CBan U + × abs
33 eqid MetOpen IndMet if U CBan U + × abs = MetOpen IndMet if U CBan U + × abs
34 eqid + × abs = + × abs
35 34 cnbn + × abs CBan
36 35 elimel if U CBan U + × abs CBan
37 elimnvu if W NrmCVec W + × abs NrmCVec
38 id T if U CBan U + × abs BLnOp if W NrmCVec W + × abs T if U CBan U + × abs BLnOp if W NrmCVec W + × abs
39 30 31 32 33 36 37 38 ubthlem3 T if U CBan U + × abs BLnOp if W NrmCVec W + × abs x BaseSet if U CBan U + × abs c t T norm CV if W NrmCVec W + × abs t x c d t T if U CBan U + × abs normOp OLD if W NrmCVec W + × abs t d
40 15 29 39 dedth2h U CBan W NrmCVec T U BLnOp W x X c t T N t x c d t T M t d
41 40 3impia U CBan W NrmCVec T U BLnOp W x X c t T N t x c d t T M t d