Step |
Hyp |
Ref |
Expression |
1 |
|
ubth.1 |
|
2 |
|
ubth.2 |
|
3 |
|
ubthlem.3 |
|
4 |
|
ubthlem.4 |
|
5 |
|
ubthlem.5 |
|
6 |
|
ubthlem.6 |
|
7 |
|
ubthlem.7 |
|
8 |
|
fveq1 |
|
9 |
8
|
fveq2d |
|
10 |
9
|
breq1d |
|
11 |
10
|
cbvralvw |
|
12 |
|
breq2 |
|
13 |
12
|
ralbidv |
|
14 |
11 13
|
syl5bb |
|
15 |
14
|
cbvrexvw |
|
16 |
|
2fveq3 |
|
17 |
16
|
breq1d |
|
18 |
17
|
rexralbidv |
|
19 |
15 18
|
syl5bb |
|
20 |
19
|
cbvralvw |
|
21 |
7
|
adantr |
|
22 |
|
simpr |
|
23 |
22 20
|
sylib |
|
24 |
|
fveq1 |
|
25 |
24
|
fveq2d |
|
26 |
25
|
breq1d |
|
27 |
26
|
cbvralvw |
|
28 |
|
2fveq3 |
|
29 |
28
|
breq1d |
|
30 |
29
|
ralbidv |
|
31 |
27 30
|
syl5bb |
|
32 |
31
|
cbvrabv |
|
33 |
|
breq2 |
|
34 |
33
|
ralbidv |
|
35 |
34
|
rabbidv |
|
36 |
32 35
|
eqtrid |
|
37 |
36
|
cbvmptv |
|
38 |
1 2 3 4 5 6 21 23 37
|
ubthlem1 |
|
39 |
7
|
ad3antrrr |
|
40 |
23
|
ad2antrr |
|
41 |
|
simplrl |
|
42 |
|
simplrr |
|
43 |
|
simprl |
|
44 |
|
simprr |
|
45 |
1 2 3 4 5 6 39 40 37 41 42 43 44
|
ubthlem2 |
|
46 |
45
|
expr |
|
47 |
46
|
rexlimdva |
|
48 |
47
|
rexlimdvva |
|
49 |
38 48
|
mpd |
|
50 |
49
|
ex |
|
51 |
20 50
|
syl5bir |
|
52 |
|
simpr |
|
53 |
|
bnnv |
|
54 |
5 53
|
ax-mp |
|
55 |
|
eqid |
|
56 |
1 55
|
nvcl |
|
57 |
54 56
|
mpan |
|
58 |
|
remulcl |
|
59 |
52 57 58
|
syl2an |
|
60 |
7
|
sselda |
|
61 |
60
|
adantlr |
|
62 |
61
|
ad2ant2r |
|
63 |
|
eqid |
|
64 |
|
eqid |
|
65 |
1 63 64
|
blof |
|
66 |
54 6 65
|
mp3an12 |
|
67 |
62 66
|
syl |
|
68 |
|
simplr |
|
69 |
67 68
|
ffvelrnd |
|
70 |
63 2
|
nvcl |
|
71 |
6 70
|
mpan |
|
72 |
69 71
|
syl |
|
73 |
|
eqid |
|
74 |
1 63 73
|
nmoxr |
|
75 |
54 6 74
|
mp3an12 |
|
76 |
67 75
|
syl |
|
77 |
|
simpllr |
|
78 |
1 63 73
|
nmogtmnf |
|
79 |
54 6 78
|
mp3an12 |
|
80 |
67 79
|
syl |
|
81 |
|
simprr |
|
82 |
|
xrre |
|
83 |
76 77 80 81 82
|
syl22anc |
|
84 |
57
|
ad2antlr |
|
85 |
|
remulcl |
|
86 |
83 84 85
|
syl2anc |
|
87 |
59
|
adantr |
|
88 |
1 55 2 73 64 54 6
|
nmblolbi |
|
89 |
62 68 88
|
syl2anc |
|
90 |
1 55
|
nvge0 |
|
91 |
54 90
|
mpan |
|
92 |
57 91
|
jca |
|
93 |
92
|
ad2antlr |
|
94 |
|
lemul1a |
|
95 |
83 77 93 81 94
|
syl31anc |
|
96 |
72 86 87 89 95
|
letrd |
|
97 |
96
|
expr |
|
98 |
97
|
ralimdva |
|
99 |
|
brralrspcev |
|
100 |
59 98 99
|
syl6an |
|
101 |
100
|
ralrimdva |
|
102 |
101
|
rexlimdva |
|
103 |
51 102
|
impbid |
|