| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ubth.1 |  | 
						
							| 2 |  | ubth.2 |  | 
						
							| 3 |  | ubthlem.3 |  | 
						
							| 4 |  | ubthlem.4 |  | 
						
							| 5 |  | ubthlem.5 |  | 
						
							| 6 |  | ubthlem.6 |  | 
						
							| 7 |  | ubthlem.7 |  | 
						
							| 8 |  | fveq1 |  | 
						
							| 9 | 8 | fveq2d |  | 
						
							| 10 | 9 | breq1d |  | 
						
							| 11 | 10 | cbvralvw |  | 
						
							| 12 |  | breq2 |  | 
						
							| 13 | 12 | ralbidv |  | 
						
							| 14 | 11 13 | bitrid |  | 
						
							| 15 | 14 | cbvrexvw |  | 
						
							| 16 |  | 2fveq3 |  | 
						
							| 17 | 16 | breq1d |  | 
						
							| 18 | 17 | rexralbidv |  | 
						
							| 19 | 15 18 | bitrid |  | 
						
							| 20 | 19 | cbvralvw |  | 
						
							| 21 | 7 | adantr |  | 
						
							| 22 |  | simpr |  | 
						
							| 23 | 22 20 | sylib |  | 
						
							| 24 |  | fveq1 |  | 
						
							| 25 | 24 | fveq2d |  | 
						
							| 26 | 25 | breq1d |  | 
						
							| 27 | 26 | cbvralvw |  | 
						
							| 28 |  | 2fveq3 |  | 
						
							| 29 | 28 | breq1d |  | 
						
							| 30 | 29 | ralbidv |  | 
						
							| 31 | 27 30 | bitrid |  | 
						
							| 32 | 31 | cbvrabv |  | 
						
							| 33 |  | breq2 |  | 
						
							| 34 | 33 | ralbidv |  | 
						
							| 35 | 34 | rabbidv |  | 
						
							| 36 | 32 35 | eqtrid |  | 
						
							| 37 | 36 | cbvmptv |  | 
						
							| 38 | 1 2 3 4 5 6 21 23 37 | ubthlem1 |  | 
						
							| 39 | 7 | ad3antrrr |  | 
						
							| 40 | 23 | ad2antrr |  | 
						
							| 41 |  | simplrl |  | 
						
							| 42 |  | simplrr |  | 
						
							| 43 |  | simprl |  | 
						
							| 44 |  | simprr |  | 
						
							| 45 | 1 2 3 4 5 6 39 40 37 41 42 43 44 | ubthlem2 |  | 
						
							| 46 | 45 | expr |  | 
						
							| 47 | 46 | rexlimdva |  | 
						
							| 48 | 47 | rexlimdvva |  | 
						
							| 49 | 38 48 | mpd |  | 
						
							| 50 | 49 | ex |  | 
						
							| 51 | 20 50 | biimtrrid |  | 
						
							| 52 |  | simpr |  | 
						
							| 53 |  | bnnv |  | 
						
							| 54 | 5 53 | ax-mp |  | 
						
							| 55 |  | eqid |  | 
						
							| 56 | 1 55 | nvcl |  | 
						
							| 57 | 54 56 | mpan |  | 
						
							| 58 |  | remulcl |  | 
						
							| 59 | 52 57 58 | syl2an |  | 
						
							| 60 | 7 | sselda |  | 
						
							| 61 | 60 | adantlr |  | 
						
							| 62 | 61 | ad2ant2r |  | 
						
							| 63 |  | eqid |  | 
						
							| 64 |  | eqid |  | 
						
							| 65 | 1 63 64 | blof |  | 
						
							| 66 | 54 6 65 | mp3an12 |  | 
						
							| 67 | 62 66 | syl |  | 
						
							| 68 |  | simplr |  | 
						
							| 69 | 67 68 | ffvelcdmd |  | 
						
							| 70 | 63 2 | nvcl |  | 
						
							| 71 | 6 70 | mpan |  | 
						
							| 72 | 69 71 | syl |  | 
						
							| 73 |  | eqid |  | 
						
							| 74 | 1 63 73 | nmoxr |  | 
						
							| 75 | 54 6 74 | mp3an12 |  | 
						
							| 76 | 67 75 | syl |  | 
						
							| 77 |  | simpllr |  | 
						
							| 78 | 1 63 73 | nmogtmnf |  | 
						
							| 79 | 54 6 78 | mp3an12 |  | 
						
							| 80 | 67 79 | syl |  | 
						
							| 81 |  | simprr |  | 
						
							| 82 |  | xrre |  | 
						
							| 83 | 76 77 80 81 82 | syl22anc |  | 
						
							| 84 | 57 | ad2antlr |  | 
						
							| 85 |  | remulcl |  | 
						
							| 86 | 83 84 85 | syl2anc |  | 
						
							| 87 | 59 | adantr |  | 
						
							| 88 | 1 55 2 73 64 54 6 | nmblolbi |  | 
						
							| 89 | 62 68 88 | syl2anc |  | 
						
							| 90 | 1 55 | nvge0 |  | 
						
							| 91 | 54 90 | mpan |  | 
						
							| 92 | 57 91 | jca |  | 
						
							| 93 | 92 | ad2antlr |  | 
						
							| 94 |  | lemul1a |  | 
						
							| 95 | 83 77 93 81 94 | syl31anc |  | 
						
							| 96 | 72 86 87 89 95 | letrd |  | 
						
							| 97 | 96 | expr |  | 
						
							| 98 | 97 | ralimdva |  | 
						
							| 99 |  | brralrspcev |  | 
						
							| 100 | 59 98 99 | syl6an |  | 
						
							| 101 | 100 | ralrimdva |  | 
						
							| 102 | 101 | rexlimdva |  | 
						
							| 103 | 51 102 | impbid |  |