| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ufilfil |
|
| 2 |
1
|
3ad2ant1 |
|
| 3 |
2
|
adantr |
|
| 4 |
|
simpr |
|
| 5 |
|
unss |
|
| 6 |
5
|
biimpi |
|
| 7 |
6
|
3adant1 |
|
| 8 |
7
|
adantr |
|
| 9 |
|
ssun1 |
|
| 10 |
9
|
a1i |
|
| 11 |
|
filss |
|
| 12 |
3 4 8 10 11
|
syl13anc |
|
| 13 |
12
|
ex |
|
| 14 |
2
|
adantr |
|
| 15 |
|
simpr |
|
| 16 |
7
|
adantr |
|
| 17 |
|
ssun2 |
|
| 18 |
17
|
a1i |
|
| 19 |
|
filss |
|
| 20 |
14 15 16 18 19
|
syl13anc |
|
| 21 |
20
|
ex |
|
| 22 |
13 21
|
jaod |
|
| 23 |
|
ufilb |
|
| 24 |
23
|
3adant3 |
|
| 25 |
24
|
adantr |
|
| 26 |
2
|
3ad2ant1 |
|
| 27 |
|
difun2 |
|
| 28 |
|
uncom |
|
| 29 |
28
|
difeq1i |
|
| 30 |
27 29
|
eqtr3i |
|
| 31 |
30
|
ineq2i |
|
| 32 |
|
indifcom |
|
| 33 |
|
indifcom |
|
| 34 |
31 32 33
|
3eqtr4i |
|
| 35 |
|
filin |
|
| 36 |
2 35
|
syl3an1 |
|
| 37 |
34 36
|
eqeltrid |
|
| 38 |
|
simp13 |
|
| 39 |
|
inss1 |
|
| 40 |
39
|
a1i |
|
| 41 |
|
filss |
|
| 42 |
26 37 38 40 41
|
syl13anc |
|
| 43 |
42
|
3expia |
|
| 44 |
25 43
|
sylbid |
|
| 45 |
44
|
orrd |
|
| 46 |
45
|
ex |
|
| 47 |
22 46
|
impbid |
|