Metamath Proof Explorer


Theorem trufil

Description: Conditions for the trace of an ultrafilter L to be an ultrafilter. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Assertion trufil LUFilYAYL𝑡AUFilAAL

Proof

Step Hyp Ref Expression
1 ufilfil L𝑡AUFilAL𝑡AFilA
2 ufilfil LUFilYLFilY
3 trfil3 LFilYAYL𝑡AFilA¬YAL
4 2 3 sylan LUFilYAYL𝑡AFilA¬YAL
5 1 4 imbitrid LUFilYAYL𝑡AUFilA¬YAL
6 4 biimprd LUFilYAY¬YALL𝑡AFilA
7 elpwi x𝒫AxA
8 simpll LUFilYAYxALUFilY
9 simpr LUFilYAYxAxA
10 simplr LUFilYAYxAAY
11 9 10 sstrd LUFilYAYxAxY
12 ufilss LUFilYxYxLYxL
13 8 11 12 syl2anc LUFilYAYxAxLYxL
14 id AYAY
15 elfvdm LUFilYYdomUFil
16 ssexg AYYdomUFilAV
17 14 15 16 syl2anr LUFilYAYAV
18 elrestr LUFilYAVxLxAL𝑡A
19 18 3expia LUFilYAVxLxAL𝑡A
20 17 19 syldan LUFilYAYxLxAL𝑡A
21 20 adantr LUFilYAYxAxLxAL𝑡A
22 df-ss xAxA=x
23 9 22 sylib LUFilYAYxAxA=x
24 23 eleq1d LUFilYAYxAxAL𝑡AxL𝑡A
25 21 24 sylibd LUFilYAYxAxLxL𝑡A
26 indif1 YxA=YAx
27 simplr LUFilYAYxAYxLAY
28 sseqin2 AYYA=A
29 27 28 sylib LUFilYAYxAYxLYA=A
30 29 difeq1d LUFilYAYxAYxLYAx=Ax
31 26 30 eqtrid LUFilYAYxAYxLYxA=Ax
32 simpll LUFilYAYxAYxLLUFilY
33 17 adantr LUFilYAYxAYxLAV
34 simprr LUFilYAYxAYxLYxL
35 elrestr LUFilYAVYxLYxAL𝑡A
36 32 33 34 35 syl3anc LUFilYAYxAYxLYxAL𝑡A
37 31 36 eqeltrrd LUFilYAYxAYxLAxL𝑡A
38 37 expr LUFilYAYxAYxLAxL𝑡A
39 25 38 orim12d LUFilYAYxAxLYxLxL𝑡AAxL𝑡A
40 13 39 mpd LUFilYAYxAxL𝑡AAxL𝑡A
41 7 40 sylan2 LUFilYAYx𝒫AxL𝑡AAxL𝑡A
42 41 ralrimiva LUFilYAYx𝒫AxL𝑡AAxL𝑡A
43 6 42 jctird LUFilYAY¬YALL𝑡AFilAx𝒫AxL𝑡AAxL𝑡A
44 isufil L𝑡AUFilAL𝑡AFilAx𝒫AxL𝑡AAxL𝑡A
45 43 44 imbitrrdi LUFilYAY¬YALL𝑡AUFilA
46 5 45 impbid LUFilYAYL𝑡AUFilA¬YAL
47 ufilb LUFilYAY¬ALYAL
48 47 con1bid LUFilYAY¬YALAL
49 46 48 bitrd LUFilYAYL𝑡AUFilAAL