Description: The property of a hypergraph to be a subgraph. (Contributed by AV, 19-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uhgrissubgr.v | |
|
uhgrissubgr.a | |
||
uhgrissubgr.i | |
||
uhgrissubgr.b | |
||
Assertion | uhgrissubgr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrissubgr.v | |
|
2 | uhgrissubgr.a | |
|
3 | uhgrissubgr.i | |
|
4 | uhgrissubgr.b | |
|
5 | eqid | |
|
6 | 1 2 3 4 5 | subgrprop2 | |
7 | 3simpa | |
|
8 | 6 7 | syl | |
9 | simprl | |
|
10 | simp2 | |
|
11 | simpr | |
|
12 | funssres | |
|
13 | 10 11 12 | syl2an | |
14 | 13 | eqcomd | |
15 | edguhgr | |
|
16 | 15 | ex | |
17 | 1 | pweqi | |
18 | 17 | eleq2i | |
19 | 16 18 | imbitrrdi | |
20 | 19 | ssrdv | |
21 | 20 | 3ad2ant3 | |
22 | 21 | adantr | |
23 | 1 2 3 4 5 | issubgr | |
24 | 23 | 3adant2 | |
25 | 24 | adantr | |
26 | 9 14 22 25 | mpbir3and | |
27 | 26 | ex | |
28 | 8 27 | impbid2 | |