Metamath Proof Explorer


Theorem uhgrissubgr

Description: The property of a hypergraph to be a subgraph. (Contributed by AV, 19-Nov-2020)

Ref Expression
Hypotheses uhgrissubgr.v V=VtxS
uhgrissubgr.a A=VtxG
uhgrissubgr.i I=iEdgS
uhgrissubgr.b B=iEdgG
Assertion uhgrissubgr GWFunBSUHGraphSSubGraphGVAIB

Proof

Step Hyp Ref Expression
1 uhgrissubgr.v V=VtxS
2 uhgrissubgr.a A=VtxG
3 uhgrissubgr.i I=iEdgS
4 uhgrissubgr.b B=iEdgG
5 eqid EdgS=EdgS
6 1 2 3 4 5 subgrprop2 SSubGraphGVAIBEdgS𝒫V
7 3simpa VAIBEdgS𝒫VVAIB
8 6 7 syl SSubGraphGVAIB
9 simprl GWFunBSUHGraphVAIBVA
10 simp2 GWFunBSUHGraphFunB
11 simpr VAIBIB
12 funssres FunBIBBdomI=I
13 10 11 12 syl2an GWFunBSUHGraphVAIBBdomI=I
14 13 eqcomd GWFunBSUHGraphVAIBI=BdomI
15 edguhgr SUHGrapheEdgSe𝒫VtxS
16 15 ex SUHGrapheEdgSe𝒫VtxS
17 1 pweqi 𝒫V=𝒫VtxS
18 17 eleq2i e𝒫Ve𝒫VtxS
19 16 18 imbitrrdi SUHGrapheEdgSe𝒫V
20 19 ssrdv SUHGraphEdgS𝒫V
21 20 3ad2ant3 GWFunBSUHGraphEdgS𝒫V
22 21 adantr GWFunBSUHGraphVAIBEdgS𝒫V
23 1 2 3 4 5 issubgr GWSUHGraphSSubGraphGVAI=BdomIEdgS𝒫V
24 23 3adant2 GWFunBSUHGraphSSubGraphGVAI=BdomIEdgS𝒫V
25 24 adantr GWFunBSUHGraphVAIBSSubGraphGVAI=BdomIEdgS𝒫V
26 9 14 22 25 mpbir3and GWFunBSUHGraphVAIBSSubGraphG
27 26 ex GWFunBSUHGraphVAIBSSubGraphG
28 8 27 impbid2 GWFunBSUHGraphSSubGraphGVAIB