| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
|
eqid |
|
| 3 |
1 2
|
nbuhgr |
|
| 4 |
3
|
adantlr |
|
| 5 |
|
df-nel |
|
| 6 |
|
prssg |
|
| 7 |
|
simpl |
|
| 8 |
6 7
|
biimtrrdi |
|
| 9 |
8
|
ad2antlr |
|
| 10 |
9
|
con3d |
|
| 11 |
5 10
|
biimtrid |
|
| 12 |
11
|
ralimdva |
|
| 13 |
12
|
imp |
|
| 14 |
|
ralnex |
|
| 15 |
13 14
|
sylib |
|
| 16 |
15
|
expcom |
|
| 17 |
16
|
expd |
|
| 18 |
17
|
impcom |
|
| 19 |
18
|
expdimp |
|
| 20 |
19
|
ralrimiv |
|
| 21 |
|
rabeq0 |
|
| 22 |
20 21
|
sylibr |
|
| 23 |
4 22
|
eqtrd |
|
| 24 |
23
|
expcom |
|
| 25 |
|
id |
|
| 26 |
25
|
intnand |
|
| 27 |
|
nbgrprc0 |
|
| 28 |
26 27
|
syl |
|
| 29 |
28
|
a1d |
|
| 30 |
24 29
|
pm2.61i |
|