Metamath Proof Explorer


Theorem ulm0

Description: Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015)

Ref Expression
Hypotheses ulm0.z Z = M
ulm0.m φ M
ulm0.f φ F : Z S
ulm0.g φ G : S
Assertion ulm0 φ S = F u S G

Proof

Step Hyp Ref Expression
1 ulm0.z Z = M
2 ulm0.m φ M
3 ulm0.f φ F : Z S
4 ulm0.g φ G : S
5 uzid M M M
6 2 5 syl φ M M
7 6 1 eleqtrrdi φ M Z
8 7 ne0d φ Z
9 ral0 z F k z G z < x
10 simpr φ S = S =
11 10 raleqdv φ S = z S F k z G z < x z F k z G z < x
12 9 11 mpbiri φ S = z S F k z G z < x
13 12 ralrimivw φ S = k j z S F k z G z < x
14 13 ralrimivw φ S = j Z k j z S F k z G z < x
15 r19.2z Z j Z k j z S F k z G z < x j Z k j z S F k z G z < x
16 8 14 15 syl2an2r φ S = j Z k j z S F k z G z < x
17 16 ralrimivw φ S = x + j Z k j z S F k z G z < x
18 2 adantr φ S = M
19 3 adantr φ S = F : Z S
20 eqidd φ S = k Z z S F k z = F k z
21 eqidd φ S = z S G z = G z
22 4 adantr φ S = G : S
23 0ex V
24 10 23 eqeltrdi φ S = S V
25 1 18 19 20 21 22 24 ulm2 φ S = F u S G x + j Z k j z S F k z G z < x
26 17 25 mpbird φ S = F u S G