Metamath Proof Explorer


Theorem ulm0

Description: Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015)

Ref Expression
Hypotheses ulm0.z Z=M
ulm0.m φM
ulm0.f φF:ZS
ulm0.g φG:S
Assertion ulm0 φS=FuSG

Proof

Step Hyp Ref Expression
1 ulm0.z Z=M
2 ulm0.m φM
3 ulm0.f φF:ZS
4 ulm0.g φG:S
5 uzid MMM
6 2 5 syl φMM
7 6 1 eleqtrrdi φMZ
8 7 ne0d φZ
9 ral0 zFkzGz<x
10 simpr φS=S=
11 10 raleqdv φS=zSFkzGz<xzFkzGz<x
12 9 11 mpbiri φS=zSFkzGz<x
13 12 ralrimivw φS=kjzSFkzGz<x
14 13 ralrimivw φS=jZkjzSFkzGz<x
15 r19.2z ZjZkjzSFkzGz<xjZkjzSFkzGz<x
16 8 14 15 syl2an2r φS=jZkjzSFkzGz<x
17 16 ralrimivw φS=x+jZkjzSFkzGz<x
18 2 adantr φS=M
19 3 adantr φS=F:ZS
20 eqidd φS=kZzSFkz=Fkz
21 eqidd φS=zSGz=Gz
22 4 adantr φS=G:S
23 0ex V
24 10 23 eqeltrdi φS=SV
25 1 18 19 20 21 22 24 ulm2 φS=FuSGx+jZkjzSFkzGz<x
26 17 25 mpbird φS=FuSG