Description: Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ulm0.z | |
|
ulm0.m | |
||
ulm0.f | |
||
ulm0.g | |
||
Assertion | ulm0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulm0.z | |
|
2 | ulm0.m | |
|
3 | ulm0.f | |
|
4 | ulm0.g | |
|
5 | uzid | |
|
6 | 2 5 | syl | |
7 | 6 1 | eleqtrrdi | |
8 | 7 | ne0d | |
9 | ral0 | |
|
10 | simpr | |
|
11 | 10 | raleqdv | |
12 | 9 11 | mpbiri | |
13 | 12 | ralrimivw | |
14 | 13 | ralrimivw | |
15 | r19.2z | |
|
16 | 8 14 15 | syl2an2r | |
17 | 16 | ralrimivw | |
18 | 2 | adantr | |
19 | 3 | adantr | |
20 | eqidd | |
|
21 | eqidd | |
|
22 | 4 | adantr | |
23 | 0ex | |
|
24 | 10 23 | eqeltrdi | |
25 | 1 18 19 20 21 22 24 | ulm2 | |
26 | 17 25 | mpbird | |