Metamath Proof Explorer


Theorem umgr2cwwkdifex

Description: If a word represents a closed walk of length at least 2 in a undirected simple graph, the first two symbols of the word must be different. (Contributed by Alexander van der Vekens, 17-Jun-2018) (Revised by AV, 30-Apr-2021)

Ref Expression
Assertion umgr2cwwkdifex GUMGraphN2WNClWWalksNGi0..^NWiW0

Proof

Step Hyp Ref Expression
1 eluz2b2 N2N1<N
2 1nn0 10
3 2 a1i N1<N10
4 simpl N1<NN
5 simpr N1<N1<N
6 elfzo0 10..^N10N1<N
7 3 4 5 6 syl3anbrc N1<N10..^N
8 1 7 sylbi N210..^N
9 8 3ad2ant2 GUMGraphN2WNClWWalksNG10..^N
10 fveq2 i=1Wi=W1
11 10 adantl GUMGraphN2WNClWWalksNGi=1Wi=W1
12 11 neeq1d GUMGraphN2WNClWWalksNGi=1WiW0W1W0
13 umgr2cwwk2dif GUMGraphN2WNClWWalksNGW1W0
14 9 12 13 rspcedvd GUMGraphN2WNClWWalksNGi0..^NWiW0