Description: Lemma for umgrislfupgr and usgrislfuspgr . (Contributed by AV, 27-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | umgrislfupgrlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2pos | |
|
2 | simprl | |
|
3 | fveq2 | |
|
4 | hash0 | |
|
5 | 3 4 | eqtrdi | |
6 | 5 | breq2d | |
7 | 2re | |
|
8 | 0re | |
|
9 | 7 8 | lenlti | |
10 | pm2.21 | |
|
11 | 9 10 | sylbi | |
12 | 6 11 | syl6bi | |
13 | 12 | adantld | |
14 | 13 | impcomd | |
15 | ax-1 | |
|
16 | 14 15 | pm2.61ine | |
17 | eldifsn | |
|
18 | 2 16 17 | sylanbrc | |
19 | simprr | |
|
20 | 18 19 | jca | |
21 | 20 | ex | |
22 | eldifi | |
|
23 | 22 | anim1i | |
24 | 21 23 | impbid1 | |
25 | 24 | rabbidva2 | |
26 | 1 25 | ax-mp | |
27 | 26 | ineq2i | |
28 | inrab | |
|
29 | hashxnn0 | |
|
30 | 29 | elv | |
31 | xnn0xr | |
|
32 | 30 31 | ax-mp | |
33 | 7 | rexri | |
34 | xrletri3 | |
|
35 | 32 33 34 | mp2an | |
36 | 35 | bicomi | |
37 | 36 | rabbii | |
38 | 27 28 37 | 3eqtri | |