Metamath Proof Explorer


Theorem umgrislfupgrlem

Description: Lemma for umgrislfupgr and usgrislfuspgr . (Contributed by AV, 27-Jan-2021)

Ref Expression
Assertion umgrislfupgrlem x𝒫V|x2x𝒫V|2x=x𝒫V|x=2

Proof

Step Hyp Ref Expression
1 2pos 0<2
2 simprl 0<2x𝒫V2xx𝒫V
3 fveq2 x=x=
4 hash0 =0
5 3 4 eqtrdi x=x=0
6 5 breq2d x=2x20
7 2re 2
8 0re 0
9 7 8 lenlti 20¬0<2
10 pm2.21 ¬0<20<2x
11 9 10 sylbi 200<2x
12 6 11 syl6bi x=2x0<2x
13 12 adantld x=x𝒫V2x0<2x
14 13 impcomd x=0<2x𝒫V2xx
15 ax-1 x0<2x𝒫V2xx
16 14 15 pm2.61ine 0<2x𝒫V2xx
17 eldifsn x𝒫Vx𝒫Vx
18 2 16 17 sylanbrc 0<2x𝒫V2xx𝒫V
19 simprr 0<2x𝒫V2x2x
20 18 19 jca 0<2x𝒫V2xx𝒫V2x
21 20 ex 0<2x𝒫V2xx𝒫V2x
22 eldifi x𝒫Vx𝒫V
23 22 anim1i x𝒫V2xx𝒫V2x
24 21 23 impbid1 0<2x𝒫V2xx𝒫V2x
25 24 rabbidva2 0<2x𝒫V|2x=x𝒫V|2x
26 1 25 ax-mp x𝒫V|2x=x𝒫V|2x
27 26 ineq2i x𝒫V|x2x𝒫V|2x=x𝒫V|x2x𝒫V|2x
28 inrab x𝒫V|x2x𝒫V|2x=x𝒫V|x22x
29 hashxnn0 xVx0*
30 29 elv x0*
31 xnn0xr x0*x*
32 30 31 ax-mp x*
33 7 rexri 2*
34 xrletri3 x*2*x=2x22x
35 32 33 34 mp2an x=2x22x
36 35 bicomi x22xx=2
37 36 rabbii x𝒫V|x22x=x𝒫V|x=2
38 27 28 37 3eqtri x𝒫V|x2x𝒫V|2x=x𝒫V|x=2