Metamath Proof Explorer


Theorem umgrislfupgrlem

Description: Lemma for umgrislfupgr and usgrislfuspgr . (Contributed by AV, 27-Jan-2021)

Ref Expression
Assertion umgrislfupgrlem ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 }

Proof

Step Hyp Ref Expression
1 2pos 0 < 2
2 simprl ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ∈ 𝒫 𝑉 )
3 fveq2 ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) )
4 hash0 ( ♯ ‘ ∅ ) = 0
5 3 4 eqtrdi ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = 0 )
6 5 breq2d ( 𝑥 = ∅ → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ 2 ≤ 0 ) )
7 2re 2 ∈ ℝ
8 0re 0 ∈ ℝ
9 7 8 lenlti ( 2 ≤ 0 ↔ ¬ 0 < 2 )
10 pm2.21 ( ¬ 0 < 2 → ( 0 < 2 → 𝑥 ≠ ∅ ) )
11 9 10 sylbi ( 2 ≤ 0 → ( 0 < 2 → 𝑥 ≠ ∅ ) )
12 6 11 syl6bi ( 𝑥 = ∅ → ( 2 ≤ ( ♯ ‘ 𝑥 ) → ( 0 < 2 → 𝑥 ≠ ∅ ) ) )
13 12 adantld ( 𝑥 = ∅ → ( ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → ( 0 < 2 → 𝑥 ≠ ∅ ) ) )
14 13 impcomd ( 𝑥 = ∅ → ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ≠ ∅ ) )
15 ax-1 ( 𝑥 ≠ ∅ → ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ≠ ∅ ) )
16 14 15 pm2.61ine ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ≠ ∅ )
17 eldifsn ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝒫 𝑉𝑥 ≠ ∅ ) )
18 2 16 17 sylanbrc ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) )
19 simprr ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 2 ≤ ( ♯ ‘ 𝑥 ) )
20 18 19 jca ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) )
21 20 ex ( 0 < 2 → ( ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) )
22 eldifi ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → 𝑥 ∈ 𝒫 𝑉 )
23 22 anim1i ( ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) )
24 21 23 impbid1 ( 0 < 2 → ( ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) )
25 24 rabbidva2 ( 0 < 2 → { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } )
26 1 25 ax-mp { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) }
27 26 ineq2i ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) = ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } )
28 inrab ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ( ♯ ‘ 𝑥 ) ≤ 2 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) }
29 hashxnn0 ( 𝑥 ∈ V → ( ♯ ‘ 𝑥 ) ∈ ℕ0* )
30 29 elv ( ♯ ‘ 𝑥 ) ∈ ℕ0*
31 xnn0xr ( ( ♯ ‘ 𝑥 ) ∈ ℕ0* → ( ♯ ‘ 𝑥 ) ∈ ℝ* )
32 30 31 ax-mp ( ♯ ‘ 𝑥 ) ∈ ℝ*
33 7 rexri 2 ∈ ℝ*
34 xrletri3 ( ( ( ♯ ‘ 𝑥 ) ∈ ℝ* ∧ 2 ∈ ℝ* ) → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ( ♯ ‘ 𝑥 ) ≤ 2 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) )
35 32 33 34 mp2an ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ( ♯ ‘ 𝑥 ) ≤ 2 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) )
36 35 bicomi ( ( ( ♯ ‘ 𝑥 ) ≤ 2 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ 𝑥 ) = 2 )
37 36 rabbii { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ( ♯ ‘ 𝑥 ) ≤ 2 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) } = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 }
38 27 28 37 3eqtri ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 }