Metamath Proof Explorer


Theorem uncov

Description: Value of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021)

Ref Expression
Assertion uncov AVBWAuncurryFB=FAB

Proof

Step Hyp Ref Expression
1 df-br ABuncurryFwABwuncurryF
2 df-unc uncurryF=xyz|yFxz
3 2 eleq2i ABwuncurryFABwxyz|yFxz
4 1 3 bitri ABuncurryFwABwxyz|yFxz
5 vex wV
6 simp2 x=Ay=Bz=wy=B
7 fveq2 x=AFx=FA
8 7 3ad2ant1 x=Ay=Bz=wFx=FA
9 simp3 x=Ay=Bz=wz=w
10 6 8 9 breq123d x=Ay=Bz=wyFxzBFAw
11 10 eloprabga AVBWwVABwxyz|yFxzBFAw
12 5 11 mp3an3 AVBWABwxyz|yFxzBFAw
13 4 12 bitrid AVBWABuncurryFwBFAw
14 13 iotabidv AVBWιw|ABuncurryFw=ιw|BFAw
15 df-ov AuncurryFB=uncurryFAB
16 df-fv uncurryFAB=ιw|ABuncurryFw
17 15 16 eqtri AuncurryFB=ιw|ABuncurryFw
18 df-fv FAB=ιw|BFAw
19 14 17 18 3eqtr4g AVBWAuncurryFB=FAB