Metamath Proof Explorer


Theorem unitsubm

Description: The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses unitsubm.1 U=UnitR
unitsubm.2 M=mulGrpR
Assertion unitsubm RRingUSubMndM

Proof

Step Hyp Ref Expression
1 unitsubm.1 U=UnitR
2 unitsubm.2 M=mulGrpR
3 eqid BaseR=BaseR
4 3 1 unitss UBaseR
5 4 a1i RRingUBaseR
6 eqid 1R=1R
7 1 6 1unit RRing1RU
8 2 oveq1i M𝑠U=mulGrpR𝑠U
9 1 8 unitgrp RRingM𝑠UGrp
10 9 grpmndd RRingM𝑠UMnd
11 2 ringmgp RRingMMnd
12 2 3 mgpbas BaseR=BaseM
13 2 6 ringidval 1R=0M
14 eqid M𝑠U=M𝑠U
15 12 13 14 issubm2 MMndUSubMndMUBaseR1RUM𝑠UMnd
16 11 15 syl RRingUSubMndMUBaseR1RUM𝑠UMnd
17 5 7 10 16 mpbir3and RRingUSubMndM