Description: The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unitsubm.1 | |
|
unitsubm.2 | |
||
Assertion | unitsubm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitsubm.1 | |
|
2 | unitsubm.2 | |
|
3 | eqid | |
|
4 | 3 1 | unitss | |
5 | 4 | a1i | |
6 | eqid | |
|
7 | 1 6 | 1unit | |
8 | 2 | oveq1i | |
9 | 1 8 | unitgrp | |
10 | 9 | grpmndd | |
11 | 2 | ringmgp | |
12 | 2 3 | mgpbas | |
13 | 2 6 | ringidval | |
14 | eqid | |
|
15 | 12 13 14 | issubm2 | |
16 | 11 15 | syl | |
17 | 5 7 10 16 | mpbir3and | |