Metamath Proof Explorer


Theorem unwf

Description: A binary union is well-founded iff its elements are. (Contributed by Mario Carneiro, 10-Jun-2013) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion unwf AR1OnBR1OnABR1On

Proof

Step Hyp Ref Expression
1 r1rankidb AR1OnAR1rankA
2 1 adantr AR1OnBR1OnAR1rankA
3 ssun1 rankArankArankB
4 rankdmr1 rankAdomR1
5 r1funlim FunR1LimdomR1
6 5 simpri LimdomR1
7 limord LimdomR1OrddomR1
8 6 7 ax-mp OrddomR1
9 rankdmr1 rankBdomR1
10 ordunel OrddomR1rankAdomR1rankBdomR1rankArankBdomR1
11 8 4 9 10 mp3an rankArankBdomR1
12 r1ord3g rankAdomR1rankArankBdomR1rankArankArankBR1rankAR1rankArankB
13 4 11 12 mp2an rankArankArankBR1rankAR1rankArankB
14 3 13 ax-mp R1rankAR1rankArankB
15 2 14 sstrdi AR1OnBR1OnAR1rankArankB
16 r1rankidb BR1OnBR1rankB
17 16 adantl AR1OnBR1OnBR1rankB
18 ssun2 rankBrankArankB
19 r1ord3g rankBdomR1rankArankBdomR1rankBrankArankBR1rankBR1rankArankB
20 9 11 19 mp2an rankBrankArankBR1rankBR1rankArankB
21 18 20 ax-mp R1rankBR1rankArankB
22 17 21 sstrdi AR1OnBR1OnBR1rankArankB
23 15 22 unssd AR1OnBR1OnABR1rankArankB
24 fvex R1rankArankBV
25 24 elpw2 AB𝒫R1rankArankBABR1rankArankB
26 23 25 sylibr AR1OnBR1OnAB𝒫R1rankArankB
27 r1sucg rankArankBdomR1R1sucrankArankB=𝒫R1rankArankB
28 11 27 ax-mp R1sucrankArankB=𝒫R1rankArankB
29 26 28 eleqtrrdi AR1OnBR1OnABR1sucrankArankB
30 r1elwf ABR1sucrankArankBABR1On
31 29 30 syl AR1OnBR1OnABR1On
32 ssun1 AAB
33 sswf ABR1OnAABAR1On
34 32 33 mpan2 ABR1OnAR1On
35 ssun2 BAB
36 sswf ABR1OnBABBR1On
37 35 36 mpan2 ABR1OnBR1On
38 34 37 jca ABR1OnAR1OnBR1On
39 31 38 impbii AR1OnBR1OnABR1On