Metamath Proof Explorer


Theorem uptra

Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses uptra.y φ 1 st K X = Y
uptra.k φ K D Full E D Faith E
uptra.g φ K func F = G
uptra.b B = Base D
uptra.x φ X B
uptra.f φ F C Func D
uptra.n φ X 2 nd K 1 st F Z M = N
uptra.j J = Hom D
uptra.m φ M X J 1 st F Z
Assertion uptra Could not format assertion : No typesetting found for |- ( ph -> ( Z ( F ( C UP D ) X ) M <-> Z ( G ( C UP E ) Y ) N ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 uptra.y φ 1 st K X = Y
2 uptra.k φ K D Full E D Faith E
3 uptra.g φ K func F = G
4 uptra.b B = Base D
5 uptra.x φ X B
6 uptra.f φ F C Func D
7 uptra.n φ X 2 nd K 1 st F Z M = N
8 uptra.j J = Hom D
9 uptra.m φ M X J 1 st F Z
10 relfull Rel D Full E
11 relin1 Rel D Full E Rel D Full E D Faith E
12 10 11 ax-mp Rel D Full E D Faith E
13 1st2ndbr Rel D Full E D Faith E K D Full E D Faith E 1 st K D Full E D Faith E 2 nd K
14 12 2 13 sylancr φ 1 st K D Full E D Faith E 2 nd K
15 inss1 D Full E D Faith E D Full E
16 fullfunc D Full E D Func E
17 15 16 sstri D Full E D Faith E D Func E
18 17 2 sselid φ K D Func E
19 6 18 cofu1st2nd φ K func F = 1 st K 2 nd K func 1 st F 2 nd F
20 relfunc Rel C Func E
21 6 18 cofucl φ K func F C Func E
22 3 21 eqeltrrd φ G C Func E
23 1st2nd Rel C Func E G C Func E G = 1 st G 2 nd G
24 20 22 23 sylancr φ G = 1 st G 2 nd G
25 3 19 24 3eqtr3d φ 1 st K 2 nd K func 1 st F 2 nd F = 1 st G 2 nd G
26 6 func1st2nd φ 1 st F C Func D 2 nd F
27 1 14 25 4 5 26 7 8 9 uptr Could not format ( ph -> ( Z ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP D ) X ) M <-> Z ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( C UP E ) Y ) N ) ) : No typesetting found for |- ( ph -> ( Z ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP D ) X ) M <-> Z ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( C UP E ) Y ) N ) ) with typecode |-
28 6 up1st2ndb Could not format ( ph -> ( Z ( F ( C UP D ) X ) M <-> Z ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP D ) X ) M ) ) : No typesetting found for |- ( ph -> ( Z ( F ( C UP D ) X ) M <-> Z ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP D ) X ) M ) ) with typecode |-
29 22 up1st2ndb Could not format ( ph -> ( Z ( G ( C UP E ) Y ) N <-> Z ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( C UP E ) Y ) N ) ) : No typesetting found for |- ( ph -> ( Z ( G ( C UP E ) Y ) N <-> Z ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( C UP E ) Y ) N ) ) with typecode |-
30 27 28 29 3bitr4d Could not format ( ph -> ( Z ( F ( C UP D ) X ) M <-> Z ( G ( C UP E ) Y ) N ) ) : No typesetting found for |- ( ph -> ( Z ( F ( C UP D ) X ) M <-> Z ( G ( C UP E ) Y ) N ) ) with typecode |-