Metamath Proof Explorer


Theorem uptrlem2

Description: Lemma for uptr . (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypotheses uptrlem1.h H = Hom C
uptrlem1.i I = Hom D
uptrlem1.j J = Hom E
uptrlem1.d ˙ = comp D
uptrlem1.e No typesetting found for |- .o. = ( comp ` E ) with typecode |-
uptrlem2.a A = Base C
uptrlem2.b B = Base D
uptrlem2.x φ X B
uptrlem2.y φ 1 st K X = Y
uptrlem2.z φ Z A
uptrlem2.w φ W A
uptrlem2.m φ M X I 1 st F Z
uptrlem2.n φ X 2 nd K 1 st F Z M = N
uptrlem2.f φ F C Func D
uptrlem2.k φ K D Full E D Faith E
uptrlem2.g φ K func F = G
Assertion uptrlem2 Could not format assertion : No typesetting found for |- ( ph -> ( A. h e. ( Y J ( ( 1st ` G ) ` W ) ) E! k e. ( Z H W ) h = ( ( ( Z ( 2nd ` G ) W ) ` k ) ( <. Y , ( ( 1st ` G ) ` Z ) >. .o. ( ( 1st ` G ) ` W ) ) N ) <-> A. g e. ( X I ( ( 1st ` F ) ` W ) ) E! k e. ( Z H W ) g = ( ( ( Z ( 2nd ` F ) W ) ` k ) ( <. X , ( ( 1st ` F ) ` Z ) >. .xb ( ( 1st ` F ) ` W ) ) M ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 uptrlem1.h H = Hom C
2 uptrlem1.i I = Hom D
3 uptrlem1.j J = Hom E
4 uptrlem1.d ˙ = comp D
5 uptrlem1.e Could not format .o. = ( comp ` E ) : No typesetting found for |- .o. = ( comp ` E ) with typecode |-
6 uptrlem2.a A = Base C
7 uptrlem2.b B = Base D
8 uptrlem2.x φ X B
9 uptrlem2.y φ 1 st K X = Y
10 uptrlem2.z φ Z A
11 uptrlem2.w φ W A
12 uptrlem2.m φ M X I 1 st F Z
13 uptrlem2.n φ X 2 nd K 1 st F Z M = N
14 uptrlem2.f φ F C Func D
15 uptrlem2.k φ K D Full E D Faith E
16 uptrlem2.g φ K func F = G
17 8 7 eleqtrdi φ X Base D
18 10 6 eleqtrdi φ Z Base C
19 11 6 eleqtrdi φ W Base C
20 14 func1st2nd φ 1 st F C Func D 2 nd F
21 relfull Rel D Full E
22 relin1 Rel D Full E Rel D Full E D Faith E
23 21 22 ax-mp Rel D Full E D Faith E
24 1st2nd Rel D Full E D Faith E K D Full E D Faith E K = 1 st K 2 nd K
25 23 15 24 sylancr φ K = 1 st K 2 nd K
26 25 15 eqeltrrd φ 1 st K 2 nd K D Full E D Faith E
27 df-br 1 st K D Full E D Faith E 2 nd K 1 st K 2 nd K D Full E D Faith E
28 26 27 sylibr φ 1 st K D Full E D Faith E 2 nd K
29 inss1 D Full E D Faith E D Full E
30 fullfunc D Full E D Func E
31 29 30 sstri D Full E D Faith E D Func E
32 31 15 sselid φ K D Func E
33 14 32 cofu1st2nd φ K func F = 1 st K 2 nd K func 1 st F 2 nd F
34 relfunc Rel C Func E
35 14 32 cofucl φ K func F C Func E
36 16 35 eqeltrrd φ G C Func E
37 1st2nd Rel C Func E G C Func E G = 1 st G 2 nd G
38 34 36 37 sylancr φ G = 1 st G 2 nd G
39 16 33 38 3eqtr3d φ 1 st K 2 nd K func 1 st F 2 nd F = 1 st G 2 nd G
40 1 2 3 4 5 17 9 18 19 12 13 20 28 39 uptrlem1 Could not format ( ph -> ( A. h e. ( Y J ( ( 1st ` G ) ` W ) ) E! k e. ( Z H W ) h = ( ( ( Z ( 2nd ` G ) W ) ` k ) ( <. Y , ( ( 1st ` G ) ` Z ) >. .o. ( ( 1st ` G ) ` W ) ) N ) <-> A. g e. ( X I ( ( 1st ` F ) ` W ) ) E! k e. ( Z H W ) g = ( ( ( Z ( 2nd ` F ) W ) ` k ) ( <. X , ( ( 1st ` F ) ` Z ) >. .xb ( ( 1st ` F ) ` W ) ) M ) ) ) : No typesetting found for |- ( ph -> ( A. h e. ( Y J ( ( 1st ` G ) ` W ) ) E! k e. ( Z H W ) h = ( ( ( Z ( 2nd ` G ) W ) ` k ) ( <. Y , ( ( 1st ` G ) ` Z ) >. .o. ( ( 1st ` G ) ` W ) ) N ) <-> A. g e. ( X I ( ( 1st ` F ) ` W ) ) E! k e. ( Z H W ) g = ( ( ( Z ( 2nd ` F ) W ) ` k ) ( <. X , ( ( 1st ` F ) ` Z ) >. .xb ( ( 1st ` F ) ` W ) ) M ) ) ) with typecode |-