Metamath Proof Explorer


Theorem upwordsing

Description: Singleton is an increasing sequence for any compatible range. (Contributed by Ender Ting, 21-Nov-2024)

Ref Expression
Hypothesis upwordsing.1 AS
Assertion upwordsing Could not format assertion : No typesetting found for |- <" A "> e. UpWord S with typecode |-

Proof

Step Hyp Ref Expression
1 upwordsing.1 AS
2 s1cl AS⟨“A”⟩WordS
3 elab6g ⟨“A”⟩WordS⟨“A”⟩w|wWordSk0..^w1wk<wk+1ww=⟨“A”⟩wWordSk0..^w1wk<wk+1
4 1 2 3 mp2b ⟨“A”⟩w|wWordSk0..^w1wk<wk+1ww=⟨“A”⟩wWordSk0..^w1wk<wk+1
5 eleq1a ⟨“A”⟩WordSw=⟨“A”⟩wWordS
6 1 2 5 mp2b w=⟨“A”⟩wWordS
7 fveq2 w=⟨“A”⟩w=⟨“A”⟩
8 7 oveq1d w=⟨“A”⟩w1=⟨“A”⟩1
9 s1len ⟨“A”⟩=1
10 9 oveq1i ⟨“A”⟩1=11
11 1m1e0 11=0
12 10 11 eqtri ⟨“A”⟩1=0
13 8 12 eqtrdi w=⟨“A”⟩w1=0
14 13 oveq2d w=⟨“A”⟩0..^w1=0..^0
15 fzo0 0..^0=
16 14 15 eqtrdi w=⟨“A”⟩0..^w1=
17 rzal 0..^w1=k0..^w1wk<wk+1
18 16 17 syl w=⟨“A”⟩k0..^w1wk<wk+1
19 6 18 jca w=⟨“A”⟩wWordSk0..^w1wk<wk+1
20 4 19 mpgbir ⟨“A”⟩w|wWordSk0..^w1wk<wk+1
21 df-upword Could not format UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } : No typesetting found for |- UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } with typecode |-
22 20 21 eleqtrri Could not format <" A "> e. UpWord S : No typesetting found for |- <" A "> e. UpWord S with typecode |-