Metamath Proof Explorer


Theorem usgrnloopvALT

Description: Alternate proof of usgrnloopv , not using umgrnloopv . (Contributed by Alexander van der Vekens, 26-Jan-2018) (Revised by AV, 17-Oct-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis usgrnloopv.e E=iEdgG
Assertion usgrnloopvALT GUSGraphMWEX=MNMN

Proof

Step Hyp Ref Expression
1 usgrnloopv.e E=iEdgG
2 prnzg MWMN
3 2 adantl EX=MNMWMN
4 neeq1 EX=MNEXMN
5 4 adantr EX=MNMWEXMN
6 3 5 mpbird EX=MNMWEX
7 fvfundmfvn0 EXXdomEFunEX
8 6 7 syl EX=MNMWXdomEFunEX
9 1 usgredg2 GUSGraphXdomEEX=2
10 fveq2 EX=MNEX=MN
11 10 eqeq1d EX=MNEX=2MN=2
12 eqid MN=MN
13 12 hashprdifel MN=2MMNNMNMN
14 13 simp3d MN=2MN
15 11 14 syl6bi EX=MNEX=2MN
16 15 adantr EX=MNMWEX=2MN
17 9 16 syl5com GUSGraphXdomEEX=MNMWMN
18 17 expcom XdomEGUSGraphEX=MNMWMN
19 18 com23 XdomEEX=MNMWGUSGraphMN
20 19 adantr XdomEFunEXEX=MNMWGUSGraphMN
21 8 20 mpcom EX=MNMWGUSGraphMN
22 21 ex EX=MNMWGUSGraphMN
23 22 com13 GUSGraphMWEX=MNMN
24 23 imp GUSGraphMWEX=MNMN