Metamath Proof Explorer


Theorem ustexhalf

Description: For each entourage V there is an entourage w that is "not more than half as large". Condition U_III of BourbakiTop1 p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017)

Ref Expression
Assertion ustexhalf UUnifOnXVUwUwwV

Proof

Step Hyp Ref Expression
1 elfvex UUnifOnXXV
2 isust XVUUnifOnXU𝒫X×XX×XUvUw𝒫X×XvwwUwUvwUIXvv-1UwUwwv
3 1 2 syl UUnifOnXUUnifOnXU𝒫X×XX×XUvUw𝒫X×XvwwUwUvwUIXvv-1UwUwwv
4 3 ibi UUnifOnXU𝒫X×XX×XUvUw𝒫X×XvwwUwUvwUIXvv-1UwUwwv
5 4 simp3d UUnifOnXvUw𝒫X×XvwwUwUvwUIXvv-1UwUwwv
6 sseq1 v=VvwVw
7 6 imbi1d v=VvwwUVwwU
8 7 ralbidv v=Vw𝒫X×XvwwUw𝒫X×XVwwU
9 ineq1 v=Vvw=Vw
10 9 eleq1d v=VvwUVwU
11 10 ralbidv v=VwUvwUwUVwU
12 sseq2 v=VIXvIXV
13 cnveq v=Vv-1=V-1
14 13 eleq1d v=Vv-1UV-1U
15 sseq2 v=VwwvwwV
16 15 rexbidv v=VwUwwvwUwwV
17 12 14 16 3anbi123d v=VIXvv-1UwUwwvIXVV-1UwUwwV
18 8 11 17 3anbi123d v=Vw𝒫X×XvwwUwUvwUIXvv-1UwUwwvw𝒫X×XVwwUwUVwUIXVV-1UwUwwV
19 18 rspcv VUvUw𝒫X×XvwwUwUvwUIXvv-1UwUwwvw𝒫X×XVwwUwUVwUIXVV-1UwUwwV
20 5 19 mpan9 UUnifOnXVUw𝒫X×XVwwUwUVwUIXVV-1UwUwwV
21 20 simp3d UUnifOnXVUIXVV-1UwUwwV
22 21 simp3d UUnifOnXVUwUwwV