Metamath Proof Explorer


Theorem ustund

Description: If two intersecting sets A and B are both small in V , their union is small in ( V ^ 2 ) . Proposition 1 of BourbakiTop1 p. II.12. This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 17-Nov-2017)

Ref Expression
Hypotheses ustund.1 φA×AV
ustund.2 φB×BV
ustund.3 φAB
Assertion ustund φAB×ABVV

Proof

Step Hyp Ref Expression
1 ustund.1 φA×AV
2 ustund.2 φB×BV
3 ustund.3 φAB
4 xpco ABAB×ABAB×AB=AB×AB
5 3 4 syl φAB×ABAB×AB=AB×AB
6 xpundi AB×AB=AB×AAB×B
7 xpindir AB×A=A×AB×A
8 inss1 A×AB×AA×A
9 8 1 sstrid φA×AB×AV
10 7 9 eqsstrid φAB×AV
11 xpindir AB×B=A×BB×B
12 inss2 A×BB×BB×B
13 12 2 sstrid φA×BB×BV
14 11 13 eqsstrid φAB×BV
15 10 14 unssd φAB×AAB×BV
16 6 15 eqsstrid φAB×ABV
17 xpundir AB×AB=A×ABB×AB
18 xpindi A×AB=A×AA×B
19 inss1 A×AA×BA×A
20 19 1 sstrid φA×AA×BV
21 18 20 eqsstrid φA×ABV
22 xpindi B×AB=B×AB×B
23 inss2 B×AB×BB×B
24 23 2 sstrid φB×AB×BV
25 22 24 eqsstrid φB×ABV
26 21 25 unssd φA×ABB×ABV
27 17 26 eqsstrid φAB×ABV
28 16 27 coss12d φAB×ABAB×ABVV
29 5 28 eqsstrrd φAB×ABVV