Description: If two intersecting sets A and B are both small in V , their union is small in ( V ^ 2 ) . Proposition 1 of BourbakiTop1 p. II.12. This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 17-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ustund.1 | |
|
ustund.2 | |
||
ustund.3 | |
||
Assertion | ustund | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ustund.1 | |
|
2 | ustund.2 | |
|
3 | ustund.3 | |
|
4 | xpco | |
|
5 | 3 4 | syl | |
6 | xpundi | |
|
7 | xpindir | |
|
8 | inss1 | |
|
9 | 8 1 | sstrid | |
10 | 7 9 | eqsstrid | |
11 | xpindir | |
|
12 | inss2 | |
|
13 | 12 2 | sstrid | |
14 | 11 13 | eqsstrid | |
15 | 10 14 | unssd | |
16 | 6 15 | eqsstrid | |
17 | xpundir | |
|
18 | xpindi | |
|
19 | inss1 | |
|
20 | 19 1 | sstrid | |
21 | 18 20 | eqsstrid | |
22 | xpindi | |
|
23 | inss2 | |
|
24 | 23 2 | sstrid | |
25 | 22 24 | eqsstrid | |
26 | 21 25 | unssd | |
27 | 17 26 | eqsstrid | |
28 | 16 27 | coss12d | |
29 | 5 28 | eqsstrrd | |