Metamath Proof Explorer


Theorem ustval

Description: The class of all uniform structures for a base X . (Contributed by Thierry Arnoux, 15-Nov-2017) (Revised by AV, 17-Sep-2021)

Ref Expression
Assertion ustval XVUnifOnX=u|u𝒫X×XX×Xuvuw𝒫X×XvwwuwuvwuIXvv-1uwuwwv

Proof

Step Hyp Ref Expression
1 df-ust UnifOn=xVu|u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwv
2 id x=Xx=X
3 2 sqxpeqd x=Xx×x=X×X
4 3 pweqd x=X𝒫x×x=𝒫X×X
5 4 sseq2d x=Xu𝒫x×xu𝒫X×X
6 3 eleq1d x=Xx×xuX×Xu
7 4 raleqdv x=Xw𝒫x×xvwwuw𝒫X×Xvwwu
8 reseq2 x=XIx=IX
9 8 sseq1d x=XIxvIXv
10 9 3anbi1d x=XIxvv-1uwuwwvIXvv-1uwuwwv
11 7 10 3anbi13d x=Xw𝒫x×xvwwuwuvwuIxvv-1uwuwwvw𝒫X×XvwwuwuvwuIXvv-1uwuwwv
12 11 ralbidv x=Xvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwvvuw𝒫X×XvwwuwuvwuIXvv-1uwuwwv
13 5 6 12 3anbi123d x=Xu𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwvu𝒫X×XX×Xuvuw𝒫X×XvwwuwuvwuIXvv-1uwuwwv
14 13 abbidv x=Xu|u𝒫x×xx×xuvuw𝒫x×xvwwuwuvwuIxvv-1uwuwwv=u|u𝒫X×XX×Xuvuw𝒫X×XvwwuwuvwuIXvv-1uwuwwv
15 elex XVXV
16 simp1 u𝒫X×XX×Xuvuw𝒫X×XvwwuwuvwuIXvv-1uwuwwvu𝒫X×X
17 16 ss2abi u|u𝒫X×XX×Xuvuw𝒫X×XvwwuwuvwuIXvv-1uwuwwvu|u𝒫X×X
18 df-pw 𝒫𝒫X×X=u|u𝒫X×X
19 17 18 sseqtrri u|u𝒫X×XX×Xuvuw𝒫X×XvwwuwuvwuIXvv-1uwuwwv𝒫𝒫X×X
20 sqxpexg XVX×XV
21 pwexg X×XV𝒫X×XV
22 pwexg 𝒫X×XV𝒫𝒫X×XV
23 20 21 22 3syl XV𝒫𝒫X×XV
24 ssexg u|u𝒫X×XX×Xuvuw𝒫X×XvwwuwuvwuIXvv-1uwuwwv𝒫𝒫X×X𝒫𝒫X×XVu|u𝒫X×XX×Xuvuw𝒫X×XvwwuwuvwuIXvv-1uwuwwvV
25 19 23 24 sylancr XVu|u𝒫X×XX×Xuvuw𝒫X×XvwwuwuvwuIXvv-1uwuwwvV
26 1 14 15 25 fvmptd3 XVUnifOnX=u|u𝒫X×XX×Xuvuw𝒫X×XvwwuwuvwuIXvv-1uwuwwv