Metamath Proof Explorer


Theorem vdegp1bi

Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of U in the edge set E is P , then adding { U , X } to the edge set, where X =/= U , yields degree P + 1 . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 3-Mar-2021)

Ref Expression
Hypotheses vdegp1ai.vg V=VtxG
vdegp1ai.u UV
vdegp1ai.i I=iEdgG
vdegp1ai.w IWordx𝒫V|x2
vdegp1ai.d VtxDegGU=P
vdegp1ai.vf VtxF=V
vdegp1bi.x XV
vdegp1bi.xu XU
vdegp1bi.f iEdgF=I++⟨“UX”⟩
Assertion vdegp1bi VtxDegFU=P+1

Proof

Step Hyp Ref Expression
1 vdegp1ai.vg V=VtxG
2 vdegp1ai.u UV
3 vdegp1ai.i I=iEdgG
4 vdegp1ai.w IWordx𝒫V|x2
5 vdegp1ai.d VtxDegGU=P
6 vdegp1ai.vf VtxF=V
7 vdegp1bi.x XV
8 vdegp1bi.xu XU
9 vdegp1bi.f iEdgF=I++⟨“UX”⟩
10 prex UXV
11 wrdf IWordx𝒫V|x2I:0..^Ix𝒫V|x2
12 11 ffund IWordx𝒫V|x2FunI
13 4 12 mp1i UXVFunI
14 6 a1i UXVVtxF=V
15 wrdv IWordx𝒫V|x2IWordV
16 4 15 ax-mp IWordV
17 cats1un IWordVUXVI++⟨“UX”⟩=IIUX
18 16 17 mpan UXVI++⟨“UX”⟩=IIUX
19 9 18 eqtrid UXViEdgF=IIUX
20 fvexd UXVIV
21 wrdlndm IWordx𝒫V|x2IdomI
22 4 21 mp1i UXVIdomI
23 2 a1i UXVUV
24 2 7 pm3.2i UVXV
25 prelpwi UVXVUX𝒫V
26 24 25 mp1i UXVUX𝒫V
27 prid1g UVUUX
28 2 27 mp1i UXVUUX
29 8 necomi UX
30 hashprg UVXVUXUX=2
31 2 7 30 mp2an UXUX=2
32 29 31 mpbi UX=2
33 32 eqcomi 2=UX
34 2re 2
35 34 eqlei 2=UX2UX
36 33 35 mp1i UXV2UX
37 1 3 13 14 19 20 22 23 26 28 36 p1evtxdp1 UXVVtxDegFU=VtxDegGU+𝑒1
38 10 37 ax-mp VtxDegFU=VtxDegGU+𝑒1
39 fzofi 0..^IFin
40 wrddm IWordx𝒫V|x2domI=0..^I
41 4 40 ax-mp domI=0..^I
42 41 eqcomi 0..^I=domI
43 1 3 42 vtxdgfisnn0 0..^IFinUVVtxDegGU0
44 39 2 43 mp2an VtxDegGU0
45 44 nn0rei VtxDegGU
46 1re 1
47 rexadd VtxDegGU1VtxDegGU+𝑒1=VtxDegGU+1
48 45 46 47 mp2an VtxDegGU+𝑒1=VtxDegGU+1
49 5 oveq1i VtxDegGU+1=P+1
50 38 48 49 3eqtri VtxDegFU=P+1