Metamath Proof Explorer


Theorem vdiscusgr

Description: In a finite complete simple graph with n vertices every vertex has degree n - 1 . (Contributed by Alexander van der Vekens, 14-Jul-2018) (Revised by AV, 17-Dec-2020)

Ref Expression
Hypothesis hashnbusgrvd.v V=VtxG
Assertion vdiscusgr GFinUSGraphvVVtxDegGv=V1GComplUSGraph

Proof

Step Hyp Ref Expression
1 hashnbusgrvd.v V=VtxG
2 1 uvtxisvtx nUnivVtxGnV
3 fveqeq2 v=nVtxDegGv=V1VtxDegGn=V1
4 3 rspccv vVVtxDegGv=V1nVVtxDegGn=V1
5 4 adantl GFinUSGraphvVVtxDegGv=V1nVVtxDegGn=V1
6 5 imp GFinUSGraphvVVtxDegGv=V1nVVtxDegGn=V1
7 1 usgruvtxvdb GFinUSGraphnVnUnivVtxGVtxDegGn=V1
8 7 adantlr GFinUSGraphvVVtxDegGv=V1nVnUnivVtxGVtxDegGn=V1
9 6 8 mpbird GFinUSGraphvVVtxDegGv=V1nVnUnivVtxG
10 9 ex GFinUSGraphvVVtxDegGv=V1nVnUnivVtxG
11 2 10 impbid2 GFinUSGraphvVVtxDegGv=V1nUnivVtxGnV
12 11 eqrdv GFinUSGraphvVVtxDegGv=V1UnivVtxG=V
13 fusgrusgr GFinUSGraphGUSGraph
14 1 cusgruvtxb GUSGraphGComplUSGraphUnivVtxG=V
15 13 14 syl GFinUSGraphGComplUSGraphUnivVtxG=V
16 15 adantr GFinUSGraphvVVtxDegGv=V1GComplUSGraphUnivVtxG=V
17 12 16 mpbird GFinUSGraphvVVtxDegGv=V1GComplUSGraph
18 17 ex GFinUSGraphvVVtxDegGv=V1GComplUSGraph