Metamath Proof Explorer


Theorem vdiscusgr

Description: In a finite complete simple graph with n vertices every vertex has degree n - 1 . (Contributed by Alexander van der Vekens, 14-Jul-2018) (Revised by AV, 17-Dec-2020)

Ref Expression
Hypothesis hashnbusgrvd.v V = Vtx G
Assertion vdiscusgr G FinUSGraph v V VtxDeg G v = V 1 G ComplUSGraph

Proof

Step Hyp Ref Expression
1 hashnbusgrvd.v V = Vtx G
2 1 uvtxisvtx n UnivVtx G n V
3 fveqeq2 v = n VtxDeg G v = V 1 VtxDeg G n = V 1
4 3 rspccv v V VtxDeg G v = V 1 n V VtxDeg G n = V 1
5 4 adantl G FinUSGraph v V VtxDeg G v = V 1 n V VtxDeg G n = V 1
6 5 imp G FinUSGraph v V VtxDeg G v = V 1 n V VtxDeg G n = V 1
7 1 usgruvtxvdb G FinUSGraph n V n UnivVtx G VtxDeg G n = V 1
8 7 adantlr G FinUSGraph v V VtxDeg G v = V 1 n V n UnivVtx G VtxDeg G n = V 1
9 6 8 mpbird G FinUSGraph v V VtxDeg G v = V 1 n V n UnivVtx G
10 9 ex G FinUSGraph v V VtxDeg G v = V 1 n V n UnivVtx G
11 2 10 impbid2 G FinUSGraph v V VtxDeg G v = V 1 n UnivVtx G n V
12 11 eqrdv G FinUSGraph v V VtxDeg G v = V 1 UnivVtx G = V
13 fusgrusgr G FinUSGraph G USGraph
14 1 cusgruvtxb G USGraph G ComplUSGraph UnivVtx G = V
15 13 14 syl G FinUSGraph G ComplUSGraph UnivVtx G = V
16 15 adantr G FinUSGraph v V VtxDeg G v = V 1 G ComplUSGraph UnivVtx G = V
17 12 16 mpbird G FinUSGraph v V VtxDeg G v = V 1 G ComplUSGraph
18 17 ex G FinUSGraph v V VtxDeg G v = V 1 G ComplUSGraph