Metamath Proof Explorer


Theorem volioof

Description: The function that assigns the Lebesgue measure to open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion volioof vol.:*×*0+∞

Proof

Step Hyp Ref Expression
1 volf vol:domvol0+∞
2 ioof .:*×*𝒫
3 ffn .:*×*𝒫.Fn*×*
4 2 3 ax-mp .Fn*×*
5 df-ov 1stx2ndx=.1stx2ndx
6 5 a1i x*×*1stx2ndx=.1stx2ndx
7 1st2nd2 x*×*x=1stx2ndx
8 7 eqcomd x*×*1stx2ndx=x
9 8 fveq2d x*×*.1stx2ndx=.x
10 6 9 eqtr2d x*×*.x=1stx2ndx
11 ioombl 1stx2ndxdomvol
12 10 11 eqeltrdi x*×*.xdomvol
13 12 rgen x*×*.xdomvol
14 4 13 pm3.2i .Fn*×*x*×*.xdomvol
15 ffnfv .:*×*domvol.Fn*×*x*×*.xdomvol
16 14 15 mpbir .:*×*domvol
17 fco vol:domvol0+∞.:*×*domvolvol.:*×*0+∞
18 1 16 17 mp2an vol.:*×*0+∞