Metamath Proof Explorer


Theorem vonn0ioo

Description: The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonn0ioo.x φXFin
vonn0ioo.n φX
vonn0ioo.a φA:X
vonn0ioo.b φB:X
vonn0ioo.i I=kXAkBk
Assertion vonn0ioo φvolnXI=kXvolAkBk

Proof

Step Hyp Ref Expression
1 vonn0ioo.x φXFin
2 vonn0ioo.n φX
3 vonn0ioo.a φA:X
4 vonn0ioo.b φB:X
5 vonn0ioo.i I=kXAkBk
6 fveq2 j=kaj=ak
7 fveq2 j=kbj=bk
8 6 7 oveq12d j=kajbj=akbk
9 8 fveq2d j=kvolajbj=volakbk
10 9 cbvprodv jxvolajbj=kxvolakbk
11 ifeq2 jxvolajbj=kxvolakbkifx=0jxvolajbj=ifx=0kxvolakbk
12 10 11 ax-mp ifx=0jxvolajbj=ifx=0kxvolakbk
13 12 a1i axbxifx=0jxvolajbj=ifx=0kxvolakbk
14 13 mpoeq3ia ax,bxifx=0jxvolajbj=ax,bxifx=0kxvolakbk
15 14 mpteq2i xFinax,bxifx=0jxvolajbj=xFinax,bxifx=0kxvolakbk
16 1 3 4 5 15 vonioo φvolnXI=AxFinax,bxifx=0jxvolajbjXB
17 15 fveq1i xFinax,bxifx=0jxvolajbjX=xFinax,bxifx=0kxvolakbkX
18 17 oveqi AxFinax,bxifx=0jxvolajbjXB=AxFinax,bxifx=0kxvolakbkXB
19 18 a1i φAxFinax,bxifx=0jxvolajbjXB=AxFinax,bxifx=0kxvolakbkXB
20 16 19 eqtrd φvolnXI=AxFinax,bxifx=0kxvolakbkXB
21 eqid xFinax,bxifx=0kxvolakbk=xFinax,bxifx=0kxvolakbk
22 21 1 2 3 4 hoidmvn0val φAxFinax,bxifx=0kxvolakbkXB=kXvolAkBk
23 20 22 eqtrd φvolnXI=kXvolAkBk