Metamath Proof Explorer


Theorem vtoclgft

Description: Closed theorem form of vtoclgf . The reverse implication is proven in ceqsal1t . See ceqsalt for a version with x and A disjoint. (Contributed by NM, 17-Feb-2013) (Revised by Mario Carneiro, 12-Oct-2016) (Proof shortened by JJ, 11-Aug-2021) Avoid ax-13 . (Revised by Gino Giotto, 6-Oct-2023)

Ref Expression
Assertion vtoclgft _xAxψxx=AφψxφAVψ

Proof

Step Hyp Ref Expression
1 elex AVAV
2 issetft _xAAVxx=A
3 1 2 imbitrid _xAAVxx=A
4 3 ad2antrr _xAxψxx=AφψxφAVxx=A
5 4 3impia _xAxψxx=AφψxφAVxx=A
6 biimp φψφψ
7 6 imim2i x=Aφψx=Aφψ
8 7 com23 x=Aφψφx=Aψ
9 8 imp x=Aφψφx=Aψ
10 9 alanimi xx=Aφψxφxx=Aψ
11 19.23t xψxx=Aψxx=Aψ
12 11 adantl _xAxψxx=Aψxx=Aψ
13 10 12 imbitrid _xAxψxx=Aφψxφxx=Aψ
14 13 imp _xAxψxx=Aφψxφxx=Aψ
15 14 3adant3 _xAxψxx=AφψxφAVxx=Aψ
16 5 15 mpd _xAxψxx=AφψxφAVψ