| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wfrfunOLD.1 |  | 
						
							| 2 |  | wfrfunOLD.2 |  | 
						
							| 3 |  | wfrfunOLD.3 |  | 
						
							| 4 |  | vex |  | 
						
							| 5 | 4 | eldm2 |  | 
						
							| 6 |  | dfwrecsOLD |  | 
						
							| 7 | 3 6 | eqtri |  | 
						
							| 8 | 7 | eleq2i |  | 
						
							| 9 |  | eluniab |  | 
						
							| 10 | 8 9 | bitri |  | 
						
							| 11 |  | abid |  | 
						
							| 12 |  | elssuni |  | 
						
							| 13 | 12 7 | sseqtrrdi |  | 
						
							| 14 | 11 13 | sylbir |  | 
						
							| 15 |  | fnop |  | 
						
							| 16 | 15 | ex |  | 
						
							| 17 |  | rsp |  | 
						
							| 18 | 17 | impcom |  | 
						
							| 19 |  | rsp |  | 
						
							| 20 |  | fndm |  | 
						
							| 21 | 20 | sseq2d |  | 
						
							| 22 | 20 | eleq2d |  | 
						
							| 23 | 21 22 | anbi12d |  | 
						
							| 24 | 23 | biimprd |  | 
						
							| 25 | 24 | expd |  | 
						
							| 26 | 25 | impcom |  | 
						
							| 27 | 1 2 3 | wfrfunOLD |  | 
						
							| 28 |  | funssfv |  | 
						
							| 29 | 28 | 3adant3l |  | 
						
							| 30 |  | fun2ssres |  | 
						
							| 31 | 30 | 3adant3r |  | 
						
							| 32 | 31 | fveq2d |  | 
						
							| 33 | 29 32 | eqeq12d |  | 
						
							| 34 | 33 | biimprd |  | 
						
							| 35 | 27 34 | mp3an1 |  | 
						
							| 36 | 35 | expcom |  | 
						
							| 37 | 36 | com23 |  | 
						
							| 38 | 26 37 | syl6com |  | 
						
							| 39 | 38 | expd |  | 
						
							| 40 | 39 | com34 |  | 
						
							| 41 | 19 40 | sylcom |  | 
						
							| 42 | 41 | adantl |  | 
						
							| 43 | 42 | com14 |  | 
						
							| 44 | 18 43 | syl7 |  | 
						
							| 45 | 44 | exp4a |  | 
						
							| 46 | 45 | pm2.43d |  | 
						
							| 47 | 46 | com34 |  | 
						
							| 48 | 16 47 | syldc |  | 
						
							| 49 | 48 | 3impd |  | 
						
							| 50 | 49 | exlimdv |  | 
						
							| 51 | 14 50 | mpdi |  | 
						
							| 52 | 51 | imp |  | 
						
							| 53 | 52 | exlimiv |  | 
						
							| 54 | 10 53 | sylbi |  | 
						
							| 55 | 54 | exlimiv |  | 
						
							| 56 | 5 55 | sylbi |  |