Description: Lemma for well-ordered recursion. If z is R minimal in ( A \ dom F ) , then C is acceptable and thus a subset of F , but dom C is bigger than dom F . Thus, z cannot be minimal, so ( A \ dom F ) must be empty, and (due to wfrdmssOLD ), dom F = A . Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wfrlem13OLD.1 | |
|
wfrlem13OLD.2 | |
||
wfrlem13OLD.3 | |
||
wfrlem13OLD.4 | |
||
Assertion | wfrlem16OLD | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfrlem13OLD.1 | |
|
2 | wfrlem13OLD.2 | |
|
3 | wfrlem13OLD.3 | |
|
4 | wfrlem13OLD.4 | |
|
5 | 3 | wfrdmssOLD | |
6 | eldifn | |
|
7 | ssun2 | |
|
8 | vsnid | |
|
9 | 7 8 | sselii | |
10 | 4 | dmeqi | |
11 | dmun | |
|
12 | fvex | |
|
13 | 12 | dmsnop | |
14 | 13 | uneq2i | |
15 | 10 11 14 | 3eqtri | |
16 | 9 15 | eleqtrri | |
17 | 1 2 3 4 | wfrlem15OLD | |
18 | elssuni | |
|
19 | 17 18 | syl | |
20 | dfwrecsOLD | |
|
21 | 3 20 | eqtri | |
22 | 19 21 | sseqtrrdi | |
23 | dmss | |
|
24 | 22 23 | syl | |
25 | 24 | sseld | |
26 | 16 25 | mpi | |
27 | 6 26 | mtand | |
28 | 27 | nrex | |
29 | df-ne | |
|
30 | difss | |
|
31 | 1 2 | tz6.26i | |
32 | 30 31 | mpan | |
33 | 29 32 | sylbir | |
34 | 28 33 | mt3 | |
35 | ssdif0 | |
|
36 | 34 35 | mpbir | |
37 | 5 36 | eqssi | |