Metamath Proof Explorer


Theorem wlk2v2e

Description: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that G is a simple graph (without loops) only if X =/= Y . (Contributed by Alexander van der Vekens, 22-Oct-2017) (Revised by AV, 8-Jan-2021)

Ref Expression
Hypotheses wlk2v2e.i I=⟨“XY”⟩
wlk2v2e.f F=⟨“00”⟩
wlk2v2e.x XV
wlk2v2e.y YV
wlk2v2e.p P=⟨“XYX”⟩
wlk2v2e.g G=XYI
Assertion wlk2v2e FWalksGP

Proof

Step Hyp Ref Expression
1 wlk2v2e.i I=⟨“XY”⟩
2 wlk2v2e.f F=⟨“00”⟩
3 wlk2v2e.x XV
4 wlk2v2e.y YV
5 wlk2v2e.p P=⟨“XYX”⟩
6 wlk2v2e.g G=XYI
7 1 opeq2i XYI=XY⟨“XY”⟩
8 6 7 eqtri G=XY⟨“XY”⟩
9 uspgr2v1e2w XVYVXY⟨“XY”⟩USHGraph
10 3 4 9 mp2an XY⟨“XY”⟩USHGraph
11 8 10 eqeltri GUSHGraph
12 uspgrupgr GUSHGraphGUPGraph
13 11 12 ax-mp GUPGraph
14 1 2 wlk2v2elem1 FWorddomI
15 3 prid1 XXY
16 4 prid2 YXY
17 s3cl XXYYXYXXY⟨“XYX”⟩WordXY
18 15 16 15 17 mp3an ⟨“XYX”⟩WordXY
19 5 18 eqeltri PWordXY
20 wrdf PWordXYP:0..^PXY
21 19 20 ax-mp P:0..^PXY
22 5 fveq2i P=⟨“XYX”⟩
23 s3len ⟨“XYX”⟩=3
24 22 23 eqtr2i 3=P
25 24 oveq2i 0..^3=0..^P
26 25 feq2i P:0..^3XYP:0..^PXY
27 21 26 mpbir P:0..^3XY
28 2 fveq2i F=⟨“00”⟩
29 s2len ⟨“00”⟩=2
30 28 29 eqtri F=2
31 30 oveq2i 0F=02
32 3z 3
33 fzoval 30..^3=031
34 32 33 ax-mp 0..^3=031
35 3m1e2 31=2
36 35 oveq2i 031=02
37 34 36 eqtr2i 02=0..^3
38 31 37 eqtri 0F=0..^3
39 38 feq2i P:0FXYP:0..^3XY
40 27 39 mpbir P:0FXY
41 1 2 3 4 5 wlk2v2elem2 k0..^FIFk=PkPk+1
42 14 40 41 3pm3.2i FWorddomIP:0FXYk0..^FIFk=PkPk+1
43 6 fveq2i VtxG=VtxXYI
44 prex XYV
45 s1cli ⟨“XY”⟩WordV
46 1 45 eqeltri IWordV
47 opvtxfv XYVIWordVVtxXYI=XY
48 44 46 47 mp2an VtxXYI=XY
49 43 48 eqtr2i XY=VtxG
50 6 fveq2i iEdgG=iEdgXYI
51 opiedgfv XYVIWordViEdgXYI=I
52 44 46 51 mp2an iEdgXYI=I
53 50 52 eqtr2i I=iEdgG
54 49 53 upgriswlk GUPGraphFWalksGPFWorddomIP:0FXYk0..^FIFk=PkPk+1
55 42 54 mpbiri GUPGraphFWalksGP
56 13 55 ax-mp FWalksGP