Metamath Proof Explorer


Theorem wlkonl1iedg

Description: If there is a walk between two vertices A and B at least of length 1, then the start vertex A is incident with an edge. (Contributed by AV, 4-Apr-2021)

Ref Expression
Hypothesis wlkonl1iedg.i I=iEdgG
Assertion wlkonl1iedg FAWalksOnGBPF0eranIAe

Proof

Step Hyp Ref Expression
1 wlkonl1iedg.i I=iEdgG
2 eqid VtxG=VtxG
3 2 wlkonprop FAWalksOnGBPGVAVtxGBVtxGFVPVFWalksGPP0=APF=B
4 fveq2 k=0Pk=P0
5 fv0p1e1 k=0Pk+1=P1
6 4 5 preq12d k=0PkPk+1=P0P1
7 6 sseq1d k=0PkPk+1eP0P1e
8 7 rexbidv k=0eranIPkPk+1eeranIP0P1e
9 1 wlkvtxiedg FWalksGPk0..^FeranIPkPk+1e
10 9 adantr FWalksGPP0=Ak0..^FeranIPkPk+1e
11 10 adantr FWalksGPP0=AF0k0..^FeranIPkPk+1e
12 wlkcl FWalksGPF0
13 elnnne0 FF0F0
14 13 simplbi2 F0F0F
15 lbfzo0 00..^FF
16 14 15 imbitrrdi F0F000..^F
17 12 16 syl FWalksGPF000..^F
18 17 adantr FWalksGPP0=AF000..^F
19 18 imp FWalksGPP0=AF000..^F
20 8 11 19 rspcdva FWalksGPP0=AF0eranIP0P1e
21 fvex P0V
22 fvex P1V
23 21 22 prss P0eP1eP0P1e
24 eleq1 P0=AP0eAe
25 ax-1 AeP1eAe
26 24 25 syl6bi P0=AP0eP1eAe
27 26 adantl FWalksGPP0=AP0eP1eAe
28 27 impd FWalksGPP0=AP0eP1eAe
29 23 28 biimtrrid FWalksGPP0=AP0P1eAe
30 29 reximdv FWalksGPP0=AeranIP0P1eeranIAe
31 30 adantr FWalksGPP0=AF0eranIP0P1eeranIAe
32 20 31 mpd FWalksGPP0=AF0eranIAe
33 32 ex FWalksGPP0=AF0eranIAe
34 33 3adant3 FWalksGPP0=APF=BF0eranIAe
35 34 3ad2ant3 GVAVtxGBVtxGFVPVFWalksGPP0=APF=BF0eranIAe
36 3 35 syl FAWalksOnGBPF0eranIAe
37 36 imp FAWalksOnGBPF0eranIAe