| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkonl1iedg.i |  | 
						
							| 2 |  | eqid |  | 
						
							| 3 | 2 | wlkonprop |  | 
						
							| 4 |  | fveq2 |  | 
						
							| 5 |  | fv0p1e1 |  | 
						
							| 6 | 4 5 | preq12d |  | 
						
							| 7 | 6 | sseq1d |  | 
						
							| 8 | 7 | rexbidv |  | 
						
							| 9 | 1 | wlkvtxiedg |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 |  | wlkcl |  | 
						
							| 13 |  | elnnne0 |  | 
						
							| 14 | 13 | simplbi2 |  | 
						
							| 15 |  | lbfzo0 |  | 
						
							| 16 | 14 15 | imbitrrdi |  | 
						
							| 17 | 12 16 | syl |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 | 18 | imp |  | 
						
							| 20 | 8 11 19 | rspcdva |  | 
						
							| 21 |  | fvex |  | 
						
							| 22 |  | fvex |  | 
						
							| 23 | 21 22 | prss |  | 
						
							| 24 |  | eleq1 |  | 
						
							| 25 |  | ax-1 |  | 
						
							| 26 | 24 25 | biimtrdi |  | 
						
							| 27 | 26 | adantl |  | 
						
							| 28 | 27 | impd |  | 
						
							| 29 | 23 28 | biimtrrid |  | 
						
							| 30 | 29 | reximdv |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 20 31 | mpd |  | 
						
							| 33 | 32 | ex |  | 
						
							| 34 | 33 | 3adant3 |  | 
						
							| 35 | 34 | 3ad2ant3 |  | 
						
							| 36 | 3 35 | syl |  | 
						
							| 37 | 36 | imp |  |