Metamath Proof Explorer


Theorem wunnatOLD

Description: Obsolete proof of wunnat as of 13-Oct-2024. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses wunnat.1 φUWUni
wunnat.2 φCU
wunnat.3 φDU
Assertion wunnatOLD φCNatDU

Proof

Step Hyp Ref Expression
1 wunnat.1 φUWUni
2 wunnat.2 φCU
3 wunnat.3 φDU
4 1 2 3 wunfunc φCFuncDU
5 1 4 4 wunxp φCFuncD×CFuncDU
6 df-hom Hom=Slot14
7 6 1 3 wunstr φHomDU
8 1 7 wunrn φranHomDU
9 1 8 wununi φranHomDU
10 df-base Base=Slot1
11 10 1 2 wunstr φBaseCU
12 1 9 11 wunmap φranHomDBaseCU
13 1 12 wunpw φ𝒫ranHomDBaseCU
14 fvex 1stfV
15 fvex 1stgV
16 ovex ranHomDBaseCV
17 ssrab2 axBaseCrxHomDsx|xBaseCyBaseCzxHomCyayrxrycompDsyx2ndfyz=x2ndgyzrxsxcompDsyaxxBaseCrxHomDsx
18 ovssunirn rxHomDsxranHomD
19 18 rgenw xBaseCrxHomDsxranHomD
20 ss2ixp xBaseCrxHomDsxranHomDxBaseCrxHomDsxxBaseCranHomD
21 19 20 ax-mp xBaseCrxHomDsxxBaseCranHomD
22 fvex BaseCV
23 fvex HomDV
24 23 rnex ranHomDV
25 24 uniex ranHomDV
26 22 25 ixpconst xBaseCranHomD=ranHomDBaseC
27 21 26 sseqtri xBaseCrxHomDsxranHomDBaseC
28 17 27 sstri axBaseCrxHomDsx|xBaseCyBaseCzxHomCyayrxrycompDsyx2ndfyz=x2ndgyzrxsxcompDsyaxranHomDBaseC
29 16 28 elpwi2 axBaseCrxHomDsx|xBaseCyBaseCzxHomCyayrxrycompDsyx2ndfyz=x2ndgyzrxsxcompDsyax𝒫ranHomDBaseC
30 29 sbcth 1stgV[˙1stg/s]˙axBaseCrxHomDsx|xBaseCyBaseCzxHomCyayrxrycompDsyx2ndfyz=x2ndgyzrxsxcompDsyax𝒫ranHomDBaseC
31 sbcel1g 1stgV[˙1stg/s]˙axBaseCrxHomDsx|xBaseCyBaseCzxHomCyayrxrycompDsyx2ndfyz=x2ndgyzrxsxcompDsyax𝒫ranHomDBaseC1stg/saxBaseCrxHomDsx|xBaseCyBaseCzxHomCyayrxrycompDsyx2ndfyz=x2ndgyzrxsxcompDsyax𝒫ranHomDBaseC
32 30 31 mpbid 1stgV1stg/saxBaseCrxHomDsx|xBaseCyBaseCzxHomCyayrxrycompDsyx2ndfyz=x2ndgyzrxsxcompDsyax𝒫ranHomDBaseC
33 15 32 ax-mp 1stg/saxBaseCrxHomDsx|xBaseCyBaseCzxHomCyayrxrycompDsyx2ndfyz=x2ndgyzrxsxcompDsyax𝒫ranHomDBaseC
34 33 sbcth 1stfV[˙1stf/r]˙1stg/saxBaseCrxHomDsx|xBaseCyBaseCzxHomCyayrxrycompDsyx2ndfyz=x2ndgyzrxsxcompDsyax𝒫ranHomDBaseC
35 sbcel1g 1stfV[˙1stf/r]˙1stg/saxBaseCrxHomDsx|xBaseCyBaseCzxHomCyayrxrycompDsyx2ndfyz=x2ndgyzrxsxcompDsyax𝒫ranHomDBaseC1stf/r1stg/saxBaseCrxHomDsx|xBaseCyBaseCzxHomCyayrxrycompDsyx2ndfyz=x2ndgyzrxsxcompDsyax𝒫ranHomDBaseC
36 34 35 mpbid 1stfV1stf/r1stg/saxBaseCrxHomDsx|xBaseCyBaseCzxHomCyayrxrycompDsyx2ndfyz=x2ndgyzrxsxcompDsyax𝒫ranHomDBaseC
37 14 36 ax-mp 1stf/r1stg/saxBaseCrxHomDsx|xBaseCyBaseCzxHomCyayrxrycompDsyx2ndfyz=x2ndgyzrxsxcompDsyax𝒫ranHomDBaseC
38 37 rgen2w fCFuncDgCFuncD1stf/r1stg/saxBaseCrxHomDsx|xBaseCyBaseCzxHomCyayrxrycompDsyx2ndfyz=x2ndgyzrxsxcompDsyax𝒫ranHomDBaseC
39 eqid CNatD=CNatD
40 eqid BaseC=BaseC
41 eqid HomC=HomC
42 eqid HomD=HomD
43 eqid compD=compD
44 39 40 41 42 43 natfval CNatD=fCFuncD,gCFuncD1stf/r1stg/saxBaseCrxHomDsx|xBaseCyBaseCzxHomCyayrxrycompDsyx2ndfyz=x2ndgyzrxsxcompDsyax
45 44 fmpo fCFuncDgCFuncD1stf/r1stg/saxBaseCrxHomDsx|xBaseCyBaseCzxHomCyayrxrycompDsyx2ndfyz=x2ndgyzrxsxcompDsyax𝒫ranHomDBaseCCNatD:CFuncD×CFuncD𝒫ranHomDBaseC
46 38 45 mpbi CNatD:CFuncD×CFuncD𝒫ranHomDBaseC
47 46 a1i φCNatD:CFuncD×CFuncD𝒫ranHomDBaseC
48 1 5 13 47 wunf φCNatDU