Metamath Proof Explorer


Theorem wunfunc

Description: A weak universe is closed under the functor set operation. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof shortened by AV, 13-Oct-2024)

Ref Expression
Hypotheses wunfunc.1 φUWUni
wunfunc.2 φCU
wunfunc.3 φDU
Assertion wunfunc φCFuncDU

Proof

Step Hyp Ref Expression
1 wunfunc.1 φUWUni
2 wunfunc.2 φCU
3 wunfunc.3 φDU
4 baseid Base=SlotBasendx
5 4 1 3 wunstr φBaseDU
6 4 1 2 wunstr φBaseCU
7 1 5 6 wunmap φBaseDBaseCU
8 homid Hom=SlotHomndx
9 8 1 2 wunstr φHomCU
10 1 9 wunrn φranHomCU
11 1 10 wununi φranHomCU
12 8 1 3 wunstr φHomDU
13 1 12 wunrn φranHomDU
14 1 13 wununi φranHomDU
15 1 11 14 wunxp φranHomC×ranHomDU
16 1 15 wunpw φ𝒫ranHomC×ranHomDU
17 1 6 6 wunxp φBaseC×BaseCU
18 1 16 17 wunmap φ𝒫ranHomC×ranHomDBaseC×BaseCU
19 1 7 18 wunxp φBaseDBaseC×𝒫ranHomC×ranHomDBaseC×BaseCU
20 relfunc RelCFuncD
21 20 a1i φRelCFuncD
22 df-br fCFuncDgfgCFuncD
23 eqid BaseC=BaseC
24 eqid BaseD=BaseD
25 simpr φfCFuncDgfCFuncDg
26 23 24 25 funcf1 φfCFuncDgf:BaseCBaseD
27 fvex BaseDV
28 fvex BaseCV
29 27 28 elmap fBaseDBaseCf:BaseCBaseD
30 26 29 sylibr φfCFuncDgfBaseDBaseC
31 mapsspw f1stzHomDf2ndzHomCz𝒫HomCz×f1stzHomDf2ndz
32 fvssunirn HomCzranHomC
33 ovssunirn f1stzHomDf2ndzranHomD
34 xpss12 HomCzranHomCf1stzHomDf2ndzranHomDHomCz×f1stzHomDf2ndzranHomC×ranHomD
35 32 33 34 mp2an HomCz×f1stzHomDf2ndzranHomC×ranHomD
36 35 sspwi 𝒫HomCz×f1stzHomDf2ndz𝒫ranHomC×ranHomD
37 31 36 sstri f1stzHomDf2ndzHomCz𝒫ranHomC×ranHomD
38 37 rgenw zBaseC×BaseCf1stzHomDf2ndzHomCz𝒫ranHomC×ranHomD
39 ss2ixp zBaseC×BaseCf1stzHomDf2ndzHomCz𝒫ranHomC×ranHomDzBaseC×BaseCf1stzHomDf2ndzHomCzzBaseC×BaseC𝒫ranHomC×ranHomD
40 38 39 ax-mp zBaseC×BaseCf1stzHomDf2ndzHomCzzBaseC×BaseC𝒫ranHomC×ranHomD
41 28 28 xpex BaseC×BaseCV
42 fvex HomCV
43 42 rnex ranHomCV
44 43 uniex ranHomCV
45 fvex HomDV
46 45 rnex ranHomDV
47 46 uniex ranHomDV
48 44 47 xpex ranHomC×ranHomDV
49 48 pwex 𝒫ranHomC×ranHomDV
50 41 49 ixpconst zBaseC×BaseC𝒫ranHomC×ranHomD=𝒫ranHomC×ranHomDBaseC×BaseC
51 40 50 sseqtri zBaseC×BaseCf1stzHomDf2ndzHomCz𝒫ranHomC×ranHomDBaseC×BaseC
52 eqid HomC=HomC
53 eqid HomD=HomD
54 23 52 53 25 funcixp φfCFuncDggzBaseC×BaseCf1stzHomDf2ndzHomCz
55 51 54 sselid φfCFuncDgg𝒫ranHomC×ranHomDBaseC×BaseC
56 30 55 opelxpd φfCFuncDgfgBaseDBaseC×𝒫ranHomC×ranHomDBaseC×BaseC
57 56 ex φfCFuncDgfgBaseDBaseC×𝒫ranHomC×ranHomDBaseC×BaseC
58 22 57 biimtrrid φfgCFuncDfgBaseDBaseC×𝒫ranHomC×ranHomDBaseC×BaseC
59 21 58 relssdv φCFuncDBaseDBaseC×𝒫ranHomC×ranHomDBaseC×BaseC
60 1 19 59 wunss φCFuncDU