Metamath Proof Explorer


Theorem xlimclim2

Description: Given a sequence of extended reals, it converges to a real number A w.r.t. the standard topology on the reals (see climreeq ), if and only if it converges to A w.r.t. to the standard topology on the extended reals. In order for the first part of the statement to even make sense, the sequence will of course eventually become (and stay) real: showing this, is the key step of the proof. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimclim2.m φM
xlimclim2.z Z=M
xlimclim2.f φF:Z*
xlimclim2.a φA
Assertion xlimclim2 φF*AFA

Proof

Step Hyp Ref Expression
1 xlimclim2.m φM
2 xlimclim2.z Z=M
3 xlimclim2.f φF:Z*
4 xlimclim2.a φA
5 simpr φF*AF*A
6 3 adantr φF*AF:Z*
7 4 adantr φF*AA
8 1 adantr φF*AM
9 8 2 6 7 5 xlimxrre φF*AjZFj:j
10 2 6 7 9 xlimclim2lem φF*AF*AFA
11 5 10 mpbid φF*AFA
12 simpr φFAFA
13 3 adantr φFAF:Z*
14 4 adantr φFAA
15 1 adantr φFAM
16 15 2 13 14 12 climxrre φFAjZFj:j
17 2 13 14 16 xlimclim2lem φFAF*AFA
18 12 17 mpbird φFAF*A
19 11 18 impbida φF*AFA