Metamath Proof Explorer


Theorem xlimmnfmpt

Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimmnfmpt.k k φ
xlimmnfmpt.m φ M
xlimmnfmpt.z Z = M
xlimmnfmpt.b φ k Z B *
xlimmnfmpt.f F = k Z B
Assertion xlimmnfmpt φ F * −∞ x j Z k j B x

Proof

Step Hyp Ref Expression
1 xlimmnfmpt.k k φ
2 xlimmnfmpt.m φ M
3 xlimmnfmpt.z Z = M
4 xlimmnfmpt.b φ k Z B *
5 xlimmnfmpt.f F = k Z B
6 nfmpt1 _ k k Z B
7 5 6 nfcxfr _ k F
8 1 4 5 fmptdf φ F : Z *
9 7 2 3 8 xlimmnf φ F * −∞ y i Z k i F k y
10 nfv k i Z
11 1 10 nfan k φ i Z
12 3 uztrn2 i Z k i k Z
13 12 adantll φ i Z k i k Z
14 simpll φ i Z k i φ
15 14 13 4 syl2anc φ i Z k i B *
16 5 fvmpt2 k Z B * F k = B
17 13 15 16 syl2anc φ i Z k i F k = B
18 17 breq1d φ i Z k i F k y B y
19 11 18 ralbida φ i Z k i F k y k i B y
20 19 rexbidva φ i Z k i F k y i Z k i B y
21 20 ralbidv φ y i Z k i F k y y i Z k i B y
22 breq2 y = x B y B x
23 22 rexralbidv y = x i Z k i B y i Z k i B x
24 fveq2 i = j i = j
25 24 raleqdv i = j k i B x k j B x
26 25 cbvrexvw i Z k i B x j Z k j B x
27 23 26 bitrdi y = x i Z k i B y j Z k j B x
28 27 cbvralvw y i Z k i B y x j Z k j B x
29 28 a1i φ y i Z k i B y x j Z k j B x
30 9 21 29 3bitrd φ F * −∞ x j Z k j B x