Metamath Proof Explorer


Theorem xmstrkgc

Description: Any metric space fulfills Tarski's geometry axioms of congruence. (Contributed by Thierry Arnoux, 13-Mar-2019)

Ref Expression
Assertion xmstrkgc G∞MetSpG𝒢TarskiC

Proof

Step Hyp Ref Expression
1 elex G∞MetSpGV
2 eqid BaseG=BaseG
3 eqid distG=distG
4 2 3 xmssym G∞MetSpxBaseGyBaseGxdistGy=ydistGx
5 4 3expb G∞MetSpxBaseGyBaseGxdistGy=ydistGx
6 5 ralrimivva G∞MetSpxBaseGyBaseGxdistGy=ydistGx
7 simpl G∞MetSpxBaseGyBaseGzBaseGG∞MetSp
8 simpr3 G∞MetSpxBaseGyBaseGzBaseGzBaseG
9 equid z=z
10 2 3 xmseq0 G∞MetSpzBaseGzBaseGzdistGz=0z=z
11 9 10 mpbiri G∞MetSpzBaseGzBaseGzdistGz=0
12 7 8 8 11 syl3anc G∞MetSpxBaseGyBaseGzBaseGzdistGz=0
13 12 eqeq2d G∞MetSpxBaseGyBaseGzBaseGxdistGy=zdistGzxdistGy=0
14 2 3 xmseq0 G∞MetSpxBaseGyBaseGxdistGy=0x=y
15 14 3adant3r3 G∞MetSpxBaseGyBaseGzBaseGxdistGy=0x=y
16 13 15 bitrd G∞MetSpxBaseGyBaseGzBaseGxdistGy=zdistGzx=y
17 16 biimpd G∞MetSpxBaseGyBaseGzBaseGxdistGy=zdistGzx=y
18 17 ralrimivvva G∞MetSpxBaseGyBaseGzBaseGxdistGy=zdistGzx=y
19 6 18 jca G∞MetSpxBaseGyBaseGxdistGy=ydistGxxBaseGyBaseGzBaseGxdistGy=zdistGzx=y
20 eqid ItvG=ItvG
21 2 3 20 istrkgc G𝒢TarskiCGVxBaseGyBaseGxdistGy=ydistGxxBaseGyBaseGzBaseGxdistGy=zdistGzx=y
22 1 19 21 sylanbrc G∞MetSpG𝒢TarskiC