Metamath Proof Explorer


Theorem xmulpnf1n

Description: Multiplication by plus infinity on the right, for negative input. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulpnf1n A*A<0A𝑒+∞=−∞

Proof

Step Hyp Ref Expression
1 simpl A*A<0A*
2 pnfxr +∞*
3 xmulneg1 A*+∞*A𝑒+∞=A𝑒+∞
4 1 2 3 sylancl A*A<0A𝑒+∞=A𝑒+∞
5 xnegcl A*A*
6 xlt0neg1 A*A<00<A
7 6 biimpa A*A<00<A
8 xmulpnf1 A*0<AA𝑒+∞=+∞
9 5 7 8 syl2an2r A*A<0A𝑒+∞=+∞
10 4 9 eqtr3d A*A<0A𝑒+∞=+∞
11 xnegmnf −∞=+∞
12 10 11 eqtr4di A*A<0A𝑒+∞=−∞
13 xmulcl A*+∞*A𝑒+∞*
14 1 2 13 sylancl A*A<0A𝑒+∞*
15 mnfxr −∞*
16 xneg11 A𝑒+∞*−∞*A𝑒+∞=−∞A𝑒+∞=−∞
17 14 15 16 sylancl A*A<0A𝑒+∞=−∞A𝑒+∞=−∞
18 12 17 mpbid A*A<0A𝑒+∞=−∞