Metamath Proof Explorer


Theorem xpord2lem

Description: Lemma for Cartesian product ordering. Calculate the value of the Cartesian product relation. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypothesis xpord2.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy2ndx=2ndyxy
Assertion xpord2lem abTcdaAbBcAdBaRca=cbSdb=dacbd

Proof

Step Hyp Ref Expression
1 xpord2.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy2ndx=2ndyxy
2 opex abV
3 opex cdV
4 eleq1 x=abxA×BabA×B
5 opelxp abA×BaAbB
6 4 5 bitrdi x=abxA×BaAbB
7 vex aV
8 vex bV
9 7 8 op1std x=ab1stx=a
10 9 breq1d x=ab1stxR1styaR1sty
11 9 eqeq1d x=ab1stx=1stya=1sty
12 10 11 orbi12d x=ab1stxR1sty1stx=1styaR1stya=1sty
13 7 8 op2ndd x=ab2ndx=b
14 13 breq1d x=ab2ndxS2ndybS2ndy
15 13 eqeq1d x=ab2ndx=2ndyb=2ndy
16 14 15 orbi12d x=ab2ndxS2ndy2ndx=2ndybS2ndyb=2ndy
17 neeq1 x=abxyaby
18 12 16 17 3anbi123d x=ab1stxR1sty1stx=1sty2ndxS2ndy2ndx=2ndyxyaR1stya=1stybS2ndyb=2ndyaby
19 6 18 3anbi13d x=abxA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy2ndx=2ndyxyaAbByA×BaR1stya=1stybS2ndyb=2ndyaby
20 eleq1 y=cdyA×BcdA×B
21 opelxp cdA×BcAdB
22 20 21 bitrdi y=cdyA×BcAdB
23 vex cV
24 vex dV
25 23 24 op1std y=cd1sty=c
26 25 breq2d y=cdaR1styaRc
27 25 eqeq2d y=cda=1stya=c
28 26 27 orbi12d y=cdaR1stya=1styaRca=c
29 23 24 op2ndd y=cd2ndy=d
30 29 breq2d y=cdbS2ndybSd
31 29 eqeq2d y=cdb=2ndyb=d
32 30 31 orbi12d y=cdbS2ndyb=2ndybSdb=d
33 neeq2 y=cdabyabcd
34 7 8 opthne abcdacbd
35 33 34 bitrdi y=cdabyacbd
36 28 32 35 3anbi123d y=cdaR1stya=1stybS2ndyb=2ndyabyaRca=cbSdb=dacbd
37 22 36 3anbi23d y=cdaAbByA×BaR1stya=1stybS2ndyb=2ndyabyaAbBcAdBaRca=cbSdb=dacbd
38 2 3 19 37 1 brab abTcdaAbBcAdBaRca=cbSdb=dacbd