Metamath Proof Explorer


Theorem xpsinv

Description: Value of the negation operation in a binary structure product. (Contributed by AV, 18-Mar-2025)

Ref Expression
Hypotheses xpsinv.t T=R×𝑠S
xpsinv.x X=BaseR
xpsinv.y Y=BaseS
xpsinv.r φRGrp
xpsinv.s φSGrp
xpsinv.a φAX
xpsinv.b φBY
xpsinv.m M=invgR
xpsinv.n N=invgS
xpsinv.i I=invgT
Assertion xpsinv φIAB=MANB

Proof

Step Hyp Ref Expression
1 xpsinv.t T=R×𝑠S
2 xpsinv.x X=BaseR
3 xpsinv.y Y=BaseS
4 xpsinv.r φRGrp
5 xpsinv.s φSGrp
6 xpsinv.a φAX
7 xpsinv.b φBY
8 xpsinv.m M=invgR
9 xpsinv.n N=invgS
10 xpsinv.i I=invgT
11 eqid +R=+R
12 eqid 0R=0R
13 2 11 12 8 4 6 grplinvd φMA+RA=0R
14 eqid +S=+S
15 eqid 0S=0S
16 3 14 15 9 5 7 grplinvd φNB+SB=0S
17 13 16 opeq12d φMA+RANB+SB=0R0S
18 2 8 4 6 grpinvcld φMAX
19 3 9 5 7 grpinvcld φNBY
20 2 11 4 18 6 grpcld φMA+RAX
21 3 14 5 19 7 grpcld φNB+SBY
22 eqid +T=+T
23 1 2 3 4 5 18 19 6 7 20 21 11 14 22 xpsadd φMANB+TAB=MA+RANB+SB
24 4 grpmndd φRMnd
25 5 grpmndd φSMnd
26 1 xpsmnd0 RMndSMnd0T=0R0S
27 24 25 26 syl2anc φ0T=0R0S
28 17 23 27 3eqtr4d φMANB+TAB=0T
29 1 xpsgrp RGrpSGrpTGrp
30 4 5 29 syl2anc φTGrp
31 6 7 opelxpd φABX×Y
32 1 2 3 4 5 xpsbas φX×Y=BaseT
33 31 32 eleqtrd φABBaseT
34 18 19 opelxpd φMANBX×Y
35 34 32 eleqtrd φMANBBaseT
36 eqid BaseT=BaseT
37 eqid 0T=0T
38 36 22 37 10 grpinvid2 TGrpABBaseTMANBBaseTIAB=MANBMANB+TAB=0T
39 30 33 35 38 syl3anc φIAB=MANBMANB+TAB=0T
40 28 39 mpbird φIAB=MANB