Metamath Proof Explorer


Theorem xrlenlt

Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by NM, 14-Oct-2005)

Ref Expression
Assertion xrlenlt A*B*AB¬B<A

Proof

Step Hyp Ref Expression
1 df-br ABAB
2 opelxpi A*B*AB*×*
3 df-le =*×*<-1
4 3 eleq2i ABAB*×*<-1
5 eldif AB*×*<-1AB*×*¬AB<-1
6 4 5 bitri ABAB*×*¬AB<-1
7 6 baib AB*×*AB¬AB<-1
8 2 7 syl A*B*AB¬AB<-1
9 1 8 bitrid A*B*AB¬AB<-1
10 df-br B<ABA<
11 opelcnvg A*B*AB<-1BA<
12 10 11 bitr4id A*B*B<AAB<-1
13 12 notbid A*B*¬B<A¬AB<-1
14 9 13 bitr4d A*B*AB¬B<A