Metamath Proof Explorer


Theorem yon1cl

Description: The Yoneda embedding at an object of C is a presheaf on C , also known as the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses yon11.y Y=YonC
yon11.b B=BaseC
yon11.c φCCat
yon11.p φXB
yon1cl.o O=oppCatC
yon1cl.s S=SetCatU
yon1cl.u φUV
yon1cl.h φranHom𝑓CU
Assertion yon1cl φ1stYXOFuncS

Proof

Step Hyp Ref Expression
1 yon11.y Y=YonC
2 yon11.b B=BaseC
3 yon11.c φCCat
4 yon11.p φXB
5 yon1cl.o O=oppCatC
6 yon1cl.s S=SetCatU
7 yon1cl.u φUV
8 yon1cl.h φranHom𝑓CU
9 eqid OFuncCatS=OFuncCatS
10 9 fucbas OFuncS=BaseOFuncCatS
11 relfunc RelCFuncOFuncCatS
12 1 3 5 6 9 7 8 yoncl φYCFuncOFuncCatS
13 1st2ndbr RelCFuncOFuncCatSYCFuncOFuncCatS1stYCFuncOFuncCatS2ndY
14 11 12 13 sylancr φ1stYCFuncOFuncCatS2ndY
15 2 10 14 funcf1 φ1stY:BOFuncS
16 15 4 ffvelcdmd φ1stYXOFuncS