Metamath Proof Explorer


Theorem yoneda

Description: The Yoneda Lemma. There is a natural isomorphism between the functors Z and E , where Z ( F , X ) is the natural transformations from Yon ( X ) = Hom ( - , X ) to F , and E ( F , X ) = F ( X ) is the evaluation functor. Here we need two universes to state the claim: the smaller universe U is used for forming the functor category Q = C op -> SetCat ( U ) , which itself does not (necessarily) live in U but instead is an element of the larger universe V . (If U is a Grothendieck universe, then it will be closed under this "presheaf" operation, and so we can set U = V in this case.) (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses yoneda.y Y=YonC
yoneda.b B=BaseC
yoneda.1 1˙=IdC
yoneda.o O=oppCatC
yoneda.s S=SetCatU
yoneda.t T=SetCatV
yoneda.q Q=OFuncCatS
yoneda.h H=HomFQ
yoneda.r R=Q×cOFuncCatT
yoneda.e E=OevalFS
yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
yoneda.c φCCat
yoneda.w φVW
yoneda.u φranHom𝑓CU
yoneda.v φranHom𝑓QUV
yoneda.m M=fOFuncS,xBa1stYxONatSfax1˙x
yoneda.i I=IsoR
Assertion yoneda φMZIE

Proof

Step Hyp Ref Expression
1 yoneda.y Y=YonC
2 yoneda.b B=BaseC
3 yoneda.1 1˙=IdC
4 yoneda.o O=oppCatC
5 yoneda.s S=SetCatU
6 yoneda.t T=SetCatV
7 yoneda.q Q=OFuncCatS
8 yoneda.h H=HomFQ
9 yoneda.r R=Q×cOFuncCatT
10 yoneda.e E=OevalFS
11 yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
12 yoneda.c φCCat
13 yoneda.w φVW
14 yoneda.u φranHom𝑓CU
15 yoneda.v φranHom𝑓QUV
16 yoneda.m M=fOFuncS,xBa1stYxONatSfax1˙x
17 yoneda.i I=IsoR
18 9 fucbas Q×cOFuncT=BaseR
19 eqid InvR=InvR
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 yonedalem1 φZQ×cOFuncTEQ×cOFuncT
21 20 simpld φZQ×cOFuncT
22 funcrcl ZQ×cOFuncTQ×cOCatTCat
23 21 22 syl φQ×cOCatTCat
24 23 simpld φQ×cOCat
25 23 simprd φTCat
26 9 24 25 fuccat φRCat
27 20 simprd φEQ×cOFuncT
28 eqid fOFuncS,xBu1stfxyBgyHomCxx2ndfygu=fOFuncS,xBu1stfxyBgyHomCxx2ndfygu
29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 28 yonedainv φMZInvREfOFuncS,xBu1stfxyBgyHomCxx2ndfygu
30 18 19 26 21 27 17 29 inviso1 φMZIE