Description: There is a unique largest integer less than or equal to a given real number. (Contributed by NM, 15-Nov-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | zmax | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl | |
|
2 | zmin | |
|
3 | 1 2 | syl | |
4 | znegcl | |
|
5 | znegcl | |
|
6 | zcn | |
|
7 | zcn | |
|
8 | negcon2 | |
|
9 | 6 7 8 | syl2an | |
10 | 5 9 | reuhyp | |
11 | breq2 | |
|
12 | breq1 | |
|
13 | 12 | imbi2d | |
14 | 13 | ralbidv | |
15 | 11 14 | anbi12d | |
16 | 4 10 15 | reuxfr1 | |
17 | zre | |
|
18 | leneg | |
|
19 | 17 18 | sylan | |
20 | 19 | ancoms | |
21 | znegcl | |
|
22 | breq1 | |
|
23 | breq1 | |
|
24 | 22 23 | imbi12d | |
25 | 24 | rspcv | |
26 | 21 25 | syl | |
27 | zre | |
|
28 | lenegcon1 | |
|
29 | 28 | adantrr | |
30 | lenegcon1 | |
|
31 | 17 30 | sylan2 | |
32 | 31 | adantrl | |
33 | 29 32 | imbi12d | |
34 | 27 33 | sylan | |
35 | 34 | biimpd | |
36 | 35 | ex | |
37 | 36 | com23 | |
38 | 26 37 | syld | |
39 | 38 | com13 | |
40 | 39 | ralrimdv | |
41 | znegcl | |
|
42 | breq2 | |
|
43 | breq2 | |
|
44 | 42 43 | imbi12d | |
45 | 44 | rspcv | |
46 | 41 45 | syl | |
47 | zre | |
|
48 | leneg | |
|
49 | 48 | adantrr | |
50 | leneg | |
|
51 | 17 50 | sylan2 | |
52 | 51 | adantrl | |
53 | 49 52 | imbi12d | |
54 | 47 53 | sylan | |
55 | 54 | exbiri | |
56 | 55 | com23 | |
57 | 46 56 | syld | |
58 | 57 | com13 | |
59 | 58 | ralrimdv | |
60 | 40 59 | impbid | |
61 | 20 60 | anbi12d | |
62 | 61 | reubidva | |
63 | 16 62 | bitr4id | |
64 | 3 63 | mpbid | |