Metamath Proof Explorer


Theorem zmax

Description: There is a unique largest integer less than or equal to a given real number. (Contributed by NM, 15-Nov-2004)

Ref Expression
Assertion zmax A∃!xxAyyAyx

Proof

Step Hyp Ref Expression
1 renegcl AA
2 zmin A∃!zAzwAwzw
3 1 2 syl A∃!zAzwAwzw
4 znegcl xx
5 znegcl zz
6 zcn zz
7 zcn xx
8 negcon2 zxz=xx=z
9 6 7 8 syl2an zxz=xx=z
10 5 9 reuhyp z∃!xz=x
11 breq2 z=xAzAx
12 breq1 z=xzwxw
13 12 imbi2d z=xAwzwAwxw
14 13 ralbidv z=xwAwzwwAwxw
15 11 14 anbi12d z=xAzwAwzwAxwAwxw
16 4 10 15 reuxfr1 ∃!zAzwAwzw∃!xAxwAwxw
17 zre xx
18 leneg xAxAAx
19 17 18 sylan xAxAAx
20 19 ancoms AxxAAx
21 znegcl ww
22 breq1 y=wyAwA
23 breq1 y=wyxwx
24 22 23 imbi12d y=wyAyxwAwx
25 24 rspcv wyyAyxwAwx
26 21 25 syl wyyAyxwAwx
27 zre ww
28 lenegcon1 wAwAAw
29 28 adantrr wAxwAAw
30 lenegcon1 wxwxxw
31 17 30 sylan2 wxwxxw
32 31 adantrl wAxwxxw
33 29 32 imbi12d wAxwAwxAwxw
34 27 33 sylan wAxwAwxAwxw
35 34 biimpd wAxwAwxAwxw
36 35 ex wAxwAwxAwxw
37 36 com23 wwAwxAxAwxw
38 26 37 syld wyyAyxAxAwxw
39 38 com13 AxyyAyxwAwxw
40 39 ralrimdv AxyyAyxwAwxw
41 znegcl yy
42 breq2 w=yAwAy
43 breq2 w=yxwxy
44 42 43 imbi12d w=yAwxwAyxy
45 44 rspcv ywAwxwAyxy
46 41 45 syl ywAwxwAyxy
47 zre yy
48 leneg yAyAAy
49 48 adantrr yAxyAAy
50 leneg yxyxxy
51 17 50 sylan2 yxyxxy
52 51 adantrl yAxyxxy
53 49 52 imbi12d yAxyAyxAyxy
54 47 53 sylan yAxyAyxAyxy
55 54 exbiri yAxAyxyyAyx
56 55 com23 yAyxyAxyAyx
57 46 56 syld ywAwxwAxyAyx
58 57 com13 AxwAwxwyyAyx
59 58 ralrimdv AxwAwxwyyAyx
60 40 59 impbid AxyyAyxwAwxw
61 20 60 anbi12d AxxAyyAyxAxwAwxw
62 61 reubidva A∃!xxAyyAyx∃!xAxwAwxw
63 16 62 bitr4id A∃!zAzwAwzw∃!xxAyyAyx
64 3 63 mpbid A∃!xxAyyAyx