Metamath Proof Explorer


Theorem 0cnop

Description: The identically zero function is a continuous Hilbert space operator. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion 0cnop 0hop ∈ ContOp

Proof

Step Hyp Ref Expression
1 ho0f 0hop : ℋ ⟶ ℋ
2 1rp 1 ∈ ℝ+
3 ho0val ( 𝑤 ∈ ℋ → ( 0hop𝑤 ) = 0 )
4 ho0val ( 𝑥 ∈ ℋ → ( 0hop𝑥 ) = 0 )
5 3 4 oveqan12rd ( ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( ( 0hop𝑤 ) − ( 0hop𝑥 ) ) = ( 0 0 ) )
6 5 adantlr ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( ( 0hop𝑤 ) − ( 0hop𝑥 ) ) = ( 0 0 ) )
7 ax-hv0cl 0 ∈ ℋ
8 hvsubid ( 0 ∈ ℋ → ( 0 0 ) = 0 )
9 7 8 ax-mp ( 0 0 ) = 0
10 6 9 eqtrdi ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( ( 0hop𝑤 ) − ( 0hop𝑥 ) ) = 0 )
11 10 fveq2d ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( norm ‘ ( ( 0hop𝑤 ) − ( 0hop𝑥 ) ) ) = ( norm ‘ 0 ) )
12 norm0 ( norm ‘ 0 ) = 0
13 11 12 eqtrdi ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( norm ‘ ( ( 0hop𝑤 ) − ( 0hop𝑥 ) ) ) = 0 )
14 rpgt0 ( 𝑦 ∈ ℝ+ → 0 < 𝑦 )
15 14 ad2antlr ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → 0 < 𝑦 )
16 13 15 eqbrtrd ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( norm ‘ ( ( 0hop𝑤 ) − ( 0hop𝑥 ) ) ) < 𝑦 )
17 16 a1d ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) → ( ( norm ‘ ( 𝑤 𝑥 ) ) < 1 → ( norm ‘ ( ( 0hop𝑤 ) − ( 0hop𝑥 ) ) ) < 𝑦 ) )
18 17 ralrimiva ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) → ∀ 𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 1 → ( norm ‘ ( ( 0hop𝑤 ) − ( 0hop𝑥 ) ) ) < 𝑦 ) )
19 breq2 ( 𝑧 = 1 → ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 ↔ ( norm ‘ ( 𝑤 𝑥 ) ) < 1 ) )
20 19 rspceaimv ( ( 1 ∈ ℝ+ ∧ ∀ 𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 1 → ( norm ‘ ( ( 0hop𝑤 ) − ( 0hop𝑥 ) ) ) < 𝑦 ) ) → ∃ 𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( norm ‘ ( ( 0hop𝑤 ) − ( 0hop𝑥 ) ) ) < 𝑦 ) )
21 2 18 20 sylancr ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( norm ‘ ( ( 0hop𝑤 ) − ( 0hop𝑥 ) ) ) < 𝑦 ) )
22 21 rgen2 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( norm ‘ ( ( 0hop𝑤 ) − ( 0hop𝑥 ) ) ) < 𝑦 )
23 elcnop ( 0hop ∈ ContOp ↔ ( 0hop : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( norm ‘ ( ( 0hop𝑤 ) − ( 0hop𝑥 ) ) ) < 𝑦 ) ) )
24 1 22 23 mpbir2an 0hop ∈ ContOp