Step |
Hyp |
Ref |
Expression |
1 |
|
gimghm |
⊢ ( 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) → 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ) |
2 |
|
ghmgrp2 |
⊢ ( 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) → 𝑁 ∈ Grp ) |
3 |
1 2
|
syl |
⊢ ( 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) → 𝑁 ∈ Grp ) |
4 |
3
|
adantl |
⊢ ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) → 𝑁 ∈ Grp ) |
5 |
4
|
grpmndd |
⊢ ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) → 𝑁 ∈ Mnd ) |
6 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → 𝑀 ∈ Abel ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) |
9 |
7 8
|
gimf1o |
⊢ ( 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) → 𝐹 : ( Base ‘ 𝑀 ) –1-1-onto→ ( Base ‘ 𝑁 ) ) |
10 |
|
f1ocnv |
⊢ ( 𝐹 : ( Base ‘ 𝑀 ) –1-1-onto→ ( Base ‘ 𝑁 ) → ◡ 𝐹 : ( Base ‘ 𝑁 ) –1-1-onto→ ( Base ‘ 𝑀 ) ) |
11 |
|
f1of |
⊢ ( ◡ 𝐹 : ( Base ‘ 𝑁 ) –1-1-onto→ ( Base ‘ 𝑀 ) → ◡ 𝐹 : ( Base ‘ 𝑁 ) ⟶ ( Base ‘ 𝑀 ) ) |
12 |
9 10 11
|
3syl |
⊢ ( 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) → ◡ 𝐹 : ( Base ‘ 𝑁 ) ⟶ ( Base ‘ 𝑀 ) ) |
13 |
12
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → ◡ 𝐹 : ( Base ‘ 𝑁 ) ⟶ ( Base ‘ 𝑀 ) ) |
14 |
|
simprl |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑁 ) ) |
15 |
13 14
|
ffvelrnd |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑀 ) ) |
16 |
|
simprr |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑁 ) ) |
17 |
13 16
|
ffvelrnd |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → ( ◡ 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) |
18 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
19 |
7 18
|
ablcom |
⊢ ( ( 𝑀 ∈ Abel ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑀 ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ◡ 𝐹 ‘ 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑀 ) ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
20 |
6 15 17 19
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ◡ 𝐹 ‘ 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑀 ) ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
21 |
|
gimcnv |
⊢ ( 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) → ◡ 𝐹 ∈ ( 𝑁 GrpIso 𝑀 ) ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → ◡ 𝐹 ∈ ( 𝑁 GrpIso 𝑀 ) ) |
23 |
|
gimghm |
⊢ ( ◡ 𝐹 ∈ ( 𝑁 GrpIso 𝑀 ) → ◡ 𝐹 ∈ ( 𝑁 GrpHom 𝑀 ) ) |
24 |
22 23
|
syl |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → ◡ 𝐹 ∈ ( 𝑁 GrpHom 𝑀 ) ) |
25 |
|
eqid |
⊢ ( +g ‘ 𝑁 ) = ( +g ‘ 𝑁 ) |
26 |
8 25 18
|
ghmlin |
⊢ ( ( ◡ 𝐹 ∈ ( 𝑁 GrpHom 𝑀 ) ∧ 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
27 |
24 14 16 26
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑀 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
28 |
8 25 18
|
ghmlin |
⊢ ( ( ◡ 𝐹 ∈ ( 𝑁 GrpHom 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ∧ 𝑥 ∈ ( Base ‘ 𝑁 ) ) → ( ◡ 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑁 ) 𝑥 ) ) = ( ( ◡ 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑀 ) ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
29 |
24 16 14 28
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → ( ◡ 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑁 ) 𝑥 ) ) = ( ( ◡ 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑀 ) ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
30 |
20 27 29
|
3eqtr4d |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ) = ( ◡ 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑁 ) 𝑥 ) ) ) |
31 |
30
|
fveq2d |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑁 ) 𝑥 ) ) ) ) |
32 |
9
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → 𝐹 : ( Base ‘ 𝑀 ) –1-1-onto→ ( Base ‘ 𝑁 ) ) |
33 |
3
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → 𝑁 ∈ Grp ) |
34 |
8 25
|
grpcl |
⊢ ( ( 𝑁 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) → ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) |
35 |
33 14 16 34
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) |
36 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : ( Base ‘ 𝑀 ) –1-1-onto→ ( Base ‘ 𝑁 ) ∧ ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ) |
37 |
32 35 36
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ) |
38 |
8 25
|
grpcl |
⊢ ( ( 𝑁 ∈ Grp ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ∧ 𝑥 ∈ ( Base ‘ 𝑁 ) ) → ( 𝑦 ( +g ‘ 𝑁 ) 𝑥 ) ∈ ( Base ‘ 𝑁 ) ) |
39 |
33 16 14 38
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → ( 𝑦 ( +g ‘ 𝑁 ) 𝑥 ) ∈ ( Base ‘ 𝑁 ) ) |
40 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : ( Base ‘ 𝑀 ) –1-1-onto→ ( Base ‘ 𝑁 ) ∧ ( 𝑦 ( +g ‘ 𝑁 ) 𝑥 ) ∈ ( Base ‘ 𝑁 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑁 ) 𝑥 ) ) ) = ( 𝑦 ( +g ‘ 𝑁 ) 𝑥 ) ) |
41 |
32 39 40
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑁 ) 𝑥 ) ) ) = ( 𝑦 ( +g ‘ 𝑁 ) 𝑥 ) ) |
42 |
31 37 41
|
3eqtr3d |
⊢ ( ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑁 ) 𝑥 ) ) |
43 |
42
|
ralrimivva |
⊢ ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑁 ) ∀ 𝑦 ∈ ( Base ‘ 𝑁 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑁 ) 𝑥 ) ) |
44 |
8 25
|
iscmn |
⊢ ( 𝑁 ∈ CMnd ↔ ( 𝑁 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑁 ) ∀ 𝑦 ∈ ( Base ‘ 𝑁 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑁 ) 𝑥 ) ) ) |
45 |
5 43 44
|
sylanbrc |
⊢ ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) → 𝑁 ∈ CMnd ) |
46 |
|
isabl |
⊢ ( 𝑁 ∈ Abel ↔ ( 𝑁 ∈ Grp ∧ 𝑁 ∈ CMnd ) ) |
47 |
4 45 46
|
sylanbrc |
⊢ ( ( 𝑀 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpIso 𝑁 ) ) → 𝑁 ∈ Abel ) |