| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmadjop |
⊢ ( 𝑆 ∈ dom adjℎ → 𝑆 : ℋ ⟶ ℋ ) |
| 2 |
|
dmadjop |
⊢ ( 𝑇 ∈ dom adjℎ → 𝑇 : ℋ ⟶ ℋ ) |
| 3 |
|
hoaddcl |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) → ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ ) |
| 5 |
|
dmadjrn |
⊢ ( 𝑆 ∈ dom adjℎ → ( adjℎ ‘ 𝑆 ) ∈ dom adjℎ ) |
| 6 |
|
dmadjop |
⊢ ( ( adjℎ ‘ 𝑆 ) ∈ dom adjℎ → ( adjℎ ‘ 𝑆 ) : ℋ ⟶ ℋ ) |
| 7 |
5 6
|
syl |
⊢ ( 𝑆 ∈ dom adjℎ → ( adjℎ ‘ 𝑆 ) : ℋ ⟶ ℋ ) |
| 8 |
|
dmadjrn |
⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |
| 9 |
|
dmadjop |
⊢ ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) |
| 10 |
8 9
|
syl |
⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) |
| 11 |
|
hoaddcl |
⊢ ( ( ( adjℎ ‘ 𝑆 ) : ℋ ⟶ ℋ ∧ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) → ( ( adjℎ ‘ 𝑆 ) +op ( adjℎ ‘ 𝑇 ) ) : ℋ ⟶ ℋ ) |
| 12 |
7 10 11
|
syl2an |
⊢ ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) → ( ( adjℎ ‘ 𝑆 ) +op ( adjℎ ‘ 𝑇 ) ) : ℋ ⟶ ℋ ) |
| 13 |
|
adj2 |
⊢ ( ( 𝑆 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) |
| 14 |
13
|
3expb |
⊢ ( ( 𝑆 ∈ dom adjℎ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) |
| 15 |
14
|
adantlr |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) ) |
| 16 |
|
adj2 |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 17 |
16
|
3expb |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 18 |
17
|
adantll |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 19 |
15 18
|
oveq12d |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) + ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) = ( ( 𝑥 ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) + ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 20 |
1
|
ffvelcdmda |
⊢ ( ( 𝑆 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ) → ( 𝑆 ‘ 𝑥 ) ∈ ℋ ) |
| 21 |
20
|
ad2ant2r |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑆 ‘ 𝑥 ) ∈ ℋ ) |
| 22 |
2
|
ffvelcdmda |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 23 |
22
|
ad2ant2lr |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 24 |
|
simprr |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑦 ∈ ℋ ) |
| 25 |
|
ax-his2 |
⊢ ( ( ( 𝑆 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) + ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 26 |
21 23 24 25
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) + ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 27 |
|
simprl |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑥 ∈ ℋ ) |
| 28 |
|
adjcl |
⊢ ( ( 𝑆 ∈ dom adjℎ ∧ 𝑦 ∈ ℋ ) → ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ∈ ℋ ) |
| 29 |
28
|
ad2ant2rl |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ∈ ℋ ) |
| 30 |
|
adjcl |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝑦 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ∈ ℋ ) |
| 31 |
30
|
ad2ant2l |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ∈ ℋ ) |
| 32 |
|
his7 |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ∈ ℋ ∧ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) = ( ( 𝑥 ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) + ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 33 |
27 29 31 32
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) = ( ( 𝑥 ·ih ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) ) + ( 𝑥 ·ih ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 34 |
19 26 33
|
3eqtr4rd |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) = ( ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) ) |
| 35 |
7 10
|
anim12i |
⊢ ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) → ( ( adjℎ ‘ 𝑆 ) : ℋ ⟶ ℋ ∧ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) ) |
| 36 |
|
hosval |
⊢ ( ( ( adjℎ ‘ 𝑆 ) : ℋ ⟶ ℋ ∧ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( adjℎ ‘ 𝑆 ) +op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) = ( ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 37 |
36
|
3expa |
⊢ ( ( ( ( adjℎ ‘ 𝑆 ) : ℋ ⟶ ℋ ∧ ( adjℎ ‘ 𝑇 ) : ℋ ⟶ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( ( ( adjℎ ‘ 𝑆 ) +op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) = ( ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 38 |
35 37
|
sylan |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ 𝑦 ∈ ℋ ) → ( ( ( adjℎ ‘ 𝑆 ) +op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) = ( ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 39 |
38
|
adantrl |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( adjℎ ‘ 𝑆 ) +op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) = ( ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 40 |
39
|
oveq2d |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑆 ) +op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑆 ) ‘ 𝑦 ) +ℎ ( ( adjℎ ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 41 |
1 2
|
anim12i |
⊢ ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) → ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ) |
| 42 |
|
hosval |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 43 |
42
|
3expa |
⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 44 |
41 43
|
sylan |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 45 |
44
|
adantrr |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 46 |
45
|
oveq1d |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑦 ) ) |
| 47 |
34 40 46
|
3eqtr4rd |
⊢ ( ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑆 ) +op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) ) ) |
| 48 |
47
|
ralrimivva |
⊢ ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑆 ) +op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) ) ) |
| 49 |
|
adjeq |
⊢ ( ( ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ ∧ ( ( adjℎ ‘ 𝑆 ) +op ( adjℎ ‘ 𝑇 ) ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ( ( adjℎ ‘ 𝑆 ) +op ( adjℎ ‘ 𝑇 ) ) ‘ 𝑦 ) ) ) → ( adjℎ ‘ ( 𝑆 +op 𝑇 ) ) = ( ( adjℎ ‘ 𝑆 ) +op ( adjℎ ‘ 𝑇 ) ) ) |
| 50 |
4 12 48 49
|
syl3anc |
⊢ ( ( 𝑆 ∈ dom adjℎ ∧ 𝑇 ∈ dom adjℎ ) → ( adjℎ ‘ ( 𝑆 +op 𝑇 ) ) = ( ( adjℎ ‘ 𝑆 ) +op ( adjℎ ‘ 𝑇 ) ) ) |