Metamath Proof Explorer


Theorem afvres

Description: The value of a restricted function, analogous to fvres . (Contributed by Alexander van der Vekens, 22-Jul-2017)

Ref Expression
Assertion afvres ( 𝐴𝐵 → ( ( 𝐹𝐵 ) ''' 𝐴 ) = ( 𝐹 ''' 𝐴 ) )

Proof

Step Hyp Ref Expression
1 elin ( 𝐴 ∈ ( 𝐵 ∩ dom 𝐹 ) ↔ ( 𝐴𝐵𝐴 ∈ dom 𝐹 ) )
2 1 biimpri ( ( 𝐴𝐵𝐴 ∈ dom 𝐹 ) → 𝐴 ∈ ( 𝐵 ∩ dom 𝐹 ) )
3 dmres dom ( 𝐹𝐵 ) = ( 𝐵 ∩ dom 𝐹 )
4 2 3 eleqtrrdi ( ( 𝐴𝐵𝐴 ∈ dom 𝐹 ) → 𝐴 ∈ dom ( 𝐹𝐵 ) )
5 4 ex ( 𝐴𝐵 → ( 𝐴 ∈ dom 𝐹𝐴 ∈ dom ( 𝐹𝐵 ) ) )
6 snssi ( 𝐴𝐵 → { 𝐴 } ⊆ 𝐵 )
7 6 resabs1d ( 𝐴𝐵 → ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) = ( 𝐹 ↾ { 𝐴 } ) )
8 7 eqcomd ( 𝐴𝐵 → ( 𝐹 ↾ { 𝐴 } ) = ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) )
9 8 funeqd ( 𝐴𝐵 → ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) )
10 9 biimpd ( 𝐴𝐵 → ( Fun ( 𝐹 ↾ { 𝐴 } ) → Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) )
11 5 10 anim12d ( 𝐴𝐵 → ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐴 ∈ dom ( 𝐹𝐵 ) ∧ Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) ) )
12 11 impcom ( ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴𝐵 ) → ( 𝐴 ∈ dom ( 𝐹𝐵 ) ∧ Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) )
13 df-dfat ( ( 𝐹𝐵 ) defAt 𝐴 ↔ ( 𝐴 ∈ dom ( 𝐹𝐵 ) ∧ Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) )
14 afvfundmfveq ( ( 𝐹𝐵 ) defAt 𝐴 → ( ( 𝐹𝐵 ) ''' 𝐴 ) = ( ( 𝐹𝐵 ) ‘ 𝐴 ) )
15 13 14 sylbir ( ( 𝐴 ∈ dom ( 𝐹𝐵 ) ∧ Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) → ( ( 𝐹𝐵 ) ''' 𝐴 ) = ( ( 𝐹𝐵 ) ‘ 𝐴 ) )
16 12 15 syl ( ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴𝐵 ) → ( ( 𝐹𝐵 ) ''' 𝐴 ) = ( ( 𝐹𝐵 ) ‘ 𝐴 ) )
17 fvres ( 𝐴𝐵 → ( ( 𝐹𝐵 ) ‘ 𝐴 ) = ( 𝐹𝐴 ) )
18 17 adantl ( ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴𝐵 ) → ( ( 𝐹𝐵 ) ‘ 𝐴 ) = ( 𝐹𝐴 ) )
19 df-dfat ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
20 afvfundmfveq ( 𝐹 defAt 𝐴 → ( 𝐹 ''' 𝐴 ) = ( 𝐹𝐴 ) )
21 19 20 sylbir ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐹 ''' 𝐴 ) = ( 𝐹𝐴 ) )
22 21 eqcomd ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐹𝐴 ) = ( 𝐹 ''' 𝐴 ) )
23 22 adantr ( ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴𝐵 ) → ( 𝐹𝐴 ) = ( 𝐹 ''' 𝐴 ) )
24 16 18 23 3eqtrd ( ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴𝐵 ) → ( ( 𝐹𝐵 ) ''' 𝐴 ) = ( 𝐹 ''' 𝐴 ) )
25 pm3.4 ( ( 𝐴𝐵𝐴 ∈ dom 𝐹 ) → ( 𝐴𝐵𝐴 ∈ dom 𝐹 ) )
26 1 25 sylbi ( 𝐴 ∈ ( 𝐵 ∩ dom 𝐹 ) → ( 𝐴𝐵𝐴 ∈ dom 𝐹 ) )
27 26 3 eleq2s ( 𝐴 ∈ dom ( 𝐹𝐵 ) → ( 𝐴𝐵𝐴 ∈ dom 𝐹 ) )
28 27 com12 ( 𝐴𝐵 → ( 𝐴 ∈ dom ( 𝐹𝐵 ) → 𝐴 ∈ dom 𝐹 ) )
29 7 funeqd ( 𝐴𝐵 → ( Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ↔ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
30 29 biimpd ( 𝐴𝐵 → ( Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) → Fun ( 𝐹 ↾ { 𝐴 } ) ) )
31 28 30 anim12d ( 𝐴𝐵 → ( ( 𝐴 ∈ dom ( 𝐹𝐵 ) ∧ Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) → ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) )
32 31 con3d ( 𝐴𝐵 → ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ¬ ( 𝐴 ∈ dom ( 𝐹𝐵 ) ∧ Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) ) )
33 32 impcom ( ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴𝐵 ) → ¬ ( 𝐴 ∈ dom ( 𝐹𝐵 ) ∧ Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) )
34 afvnfundmuv ( ¬ ( 𝐹𝐵 ) defAt 𝐴 → ( ( 𝐹𝐵 ) ''' 𝐴 ) = V )
35 13 34 sylnbir ( ¬ ( 𝐴 ∈ dom ( 𝐹𝐵 ) ∧ Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) → ( ( 𝐹𝐵 ) ''' 𝐴 ) = V )
36 33 35 syl ( ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴𝐵 ) → ( ( 𝐹𝐵 ) ''' 𝐴 ) = V )
37 afvnfundmuv ( ¬ 𝐹 defAt 𝐴 → ( 𝐹 ''' 𝐴 ) = V )
38 19 37 sylnbir ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐹 ''' 𝐴 ) = V )
39 38 eqcomd ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → V = ( 𝐹 ''' 𝐴 ) )
40 39 adantr ( ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴𝐵 ) → V = ( 𝐹 ''' 𝐴 ) )
41 36 40 eqtrd ( ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ∧ 𝐴𝐵 ) → ( ( 𝐹𝐵 ) ''' 𝐴 ) = ( 𝐹 ''' 𝐴 ) )
42 24 41 pm2.61ian ( 𝐴𝐵 → ( ( 𝐹𝐵 ) ''' 𝐴 ) = ( 𝐹 ''' 𝐴 ) )